• Title/Summary/Keyword: styrene-butadiene rubber (SBR)

Search Result 116, Processing Time 0.026 seconds

Zinc Surfactant Effects on Nr/Tespd/Silica and SBR/Tespd/Silica Compounds

  • Kim, Kwang-Jea;Vanderkooi, John
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.263-273
    • /
    • 2004
  • The effects of zinc surfactant (ZB) on the bis(triethoxysilylpropyl)disulfide (TESPD)-silica mixture in natural rubber (NR) and solution butadiene-co-styrene rubber(S-SBR) were compared with respect to their rheological property, processability, physical properties, and silica dispersion. In the NR compound, addition of the ZB increased the reversion resistance time (T-2), the tensile modulus, and the BO time; however, lowered the viscosity, the HBU, and tans values. In the S-SBR copound, addition of the ZB increased the $tan{\delta}$ values while lowered the T-2, the tensile modulus the BO time, the viscosity, and the HBU of the compound. In the NR compounds, addition of the ZB significantly increased the processability and mechanical property. However, in the S-SBR compounds, it improved the processability the mechanical property was not improved.

Preparation and Characterization of Anionic Emulsified Asphalt with Enhanced Adhesion Properties

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.304-313
    • /
    • 2015
  • In this study, the anionic emulsified asphalt was prepared by dispersing asphalt particles evenly into water with combination of anionic and nonionic surfactants. Effects of NaOH and $CaCl_2$ on the phase stability of the emulsified asphalt were also investigated through zeta potential value and rheology behavior; the emulsified asphalt added with NaOH and $CaCl_2$ showed higher zeta potential value than that the asphalt with addition of only anionic and nonionic surfactants. In addition, with regard to shear thinning behaviors, it was found that pH of the emulsified anionic asphalt and $Ca^{2+}$, counter ion, affected the phase stability. SBR (styrene-butadiene-rubber) latex, EPD (water dispersed Epoxy), PU (polyurethane) and RI-10S, SBS (styrene-butadiene-styrene)-based property improvement additive, were used and studied to enhance the adhesion properties with the aggregates. RI-10S, however, was found to be only compatible with the anionic emulsified asphalt; the coating rate, adhesion and compression strength were increased with the RI-10S content.

Properties of Styrene-Butadiene Rubber Nanocomposites Reinforced with Carbon Black, Carbon Nanotube, Graphene, Graphite

  • Song, Sung-Ho;Kwon, O-Seok;Jeong, Ho-Kyun;Kang, Yong-Gu
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.104-110
    • /
    • 2010
  • The characteristics of all polymer composites containing carbon materials are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape. As a consequence, in this paper we discuss the aspects of the mechanical, electrical and thermal properties of composites with different fillers of carbon black, carbon nanotube (CNT), graphene and graphite and focus on the relationship between factors and properties, as mentioned above. Accordingly, we fabricate rubber composites that contain various carbon materials in carbon black-based and silica based-SBR matrixes with dual phase fillers and use scanning electron microscopy, Raman spectroscopy, a rhometer, an Instron tensile machine, and a thermal conductivity analyzer to evaluate composites' mechanical, fatigue, thermal, and electronic properties. In mechanical properties, hardness and 300%-modulus of graphene-composite are sharply increased in all cases due to the larger specific surface. Also, it has been found that the thermal conductivity of the CNT-composite is higher than that of any of the other composites and that the composite with graphene has the best electrical properties.

Study on Mechanical Properties Modification of Styrene Butadiene Rubber Composites Filling with Graphene and Molybdenum Disulfide

  • Xu, Li Xiang;Sohn, Mi Hyun;Kim, Yu Soo;Jeong, Ye Rin;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.52-59
    • /
    • 2019
  • Styrene-butadiene rubber (SBR) composites, incorporated with graphene, molybdenum disulfide and their hybrid in different filling ratio, were fabricated by a two roll-mill. The dispersion states of all the samples' matrix were employed by carbon black dispersion tester. The curing properties of the pre-vulcanized rubber composites were investigated, after molding by heating press machine, the tensile strength, storage modulus, friction coefficient, the swelling property had also been tested according to ASTM. The composite G1M10 (filling with 1 phr graphene and 10 phr molybdenum) showed the best mechanical properties and viscoelastic properties in this research with a better filler dispersion state and more compact matrix structure.

Effect of Polymers on the Freezing and Thawing Resistance of Hardened Cement Mortar (시멘트 경화체의 동결융저항성에 미치는 Polymer의 영향)

  • 이선우;김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.509-516
    • /
    • 1991
  • The effect of various polymers on the freeze-thaw resistance of hardened cement mortar was investigated. For this study, styrene butadiene rubber (SBR), ethylene vinyl acetate (EVA), polyvinyl alcohol (PVA) were used to prepare cement mortar specimen, and then freeze-thaw experiment was carried out. By adding SBR adn EVA to the specimen, the freeze-thaw resistance of specimens was improved, but when PVA was added to the specimen, its freeze-thaw resistance was lowered. Particularly, the specimens which were added 5, 10% of SBR and 5% of EVA showed excellent freeze-thaw resistance in the salt environment.

  • PDF

Effect of Environmental Factors on the Properties of Polymeric Material(II) : Temperature and Ozone Exposure Time (고분자재료의 물성에 미치는 환경인자의 영향(II) : 온도 및 오존 노출시간)

  • 박찬영;박성수;민성기
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.73-77
    • /
    • 2001
  • This study examined blends of styrene butadiene rubber(SBR) and chloroprene rubber(CR) prepared from an open 2-roll mill following the conventional polymer blend method for a wide range of the blend composition. Rubber vulcanizates were manufactured by hot press and then mechanical properties, heat and ozone resistance of the specimens were examined. Due to the post cure during the aging test, hardness of vulcanizates was increased. It was found that the undesirable characteristics of heat and ozone resistance of pure SBR was significantly improved through the blending of SBR with CR.

  • PDF

Influence of Extender Oil on Properties of Solution Styrene-Butadiene Rubber Composites

  • Choi, Sung-Seen;Ko, Eunah
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.196-204
    • /
    • 2015
  • Crosslink density of a rubber vulcanizate determines the chemical and physical properties, while bound rubber is an important factor to estimate reinforcement of a filled rubber compound. Extender oil is added to a raw rubber with very high molecular weight for improving processability of a rubber composite. Influence of extender oil on crosslink density, bound rubber formation, and physical properties of solution styrene-butadiene rubber (SSBR) composites with differing microstructures was investigated. Crosslink densities of non-oil-extended SSBR (NO-SSBR) vulcanizates were higher than those of oil-extended SSBR (OE-SSBR) ones. Bound rubber contents of NO-SSBR compounds were also greater than those of OE-SSBR ones. The experimental results could be explained by interfering of extender oil. The OE-SSBR vulcanizates had low modulus but long elongation at break, whereas the NO-SSBR ones had high modulus but short elongation at break. It was found that the crosslink densities affected the physical properties more than the bound rubber contents. The moduli increased with increase in the crosslink density irrespective of extender oil, while the elongation at break decreased. Each variation of the tensile strengths of NO-SSBR and OE-SSBR vulcanizates with the crosslink density showed a decreasing trend. Tear strength of the OE-SSBR vulcanizate increased with increase in the crosslink density, whereas variation of the tear strength of NO-SSBR vulcanizate with the crosslink density showed a weak decreasing trend.

Physical and Chemical Characteristics of Multi-walled Carbon Nanotube (MWCNT) with Acid-treatment and Coupling Agent on the Properties of Styrene Butadiene Rubber (SBR) (SBR에 산 처리된 MWCNT 및 커플링제 적용 시 발현되는 물리.화학적 특성 연구)

  • Song, Sung-Ho;Jeong, Ho-Kyun;Kang, Yong-Gu;Cho, Choon-Tack
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.108-115
    • /
    • 2010
  • The effects of acid-treated MWCNT and coupling agent on properties of MWCNT/SBR are investigated in this work. The MWCNTs oxidized using sulfuric and nitric acids were analyzed by the Raman scattering and Fourier transformed infrared spectroscopy(FT-IR). The FT-IR results indicate the presence of -COOH groups in the treated samples, and Raman spectroscopy of the acidtreated MWCNTs further corroborates the formation of surface defect due to the introduction of carboxyl groups. And the nanocomposites reinforced with MWCNTs were characterized extensively using the scanning electron microscopy(SEM), electrical conductivity, thermal conductivity, and tensile properties measurements. The results showed that nanocomposites onto acid-treated MWCNTs enhanced mechanical properties compared to those containing MWCNTs without acid treatment. These findings confirmed the improved interfacial interactions between MWCNTs and SBR arising from the coupling agents. But the electrical and thermal conductivity of nanocomposites decreased due to the chopping and formation of surface defects of MWCNTs.

On the Pyrolysis of Polymers III. Identification of Gases from Rubber Pyrolysis by Gas Chromatography (高分子物質의 熱分解에 關한 硏究 (第3報) 合成고무類의 熱分解生成物의 Gas Chromatography에 의한 檢索과 合成고무 確認에의 利用)

  • Chwa-Kyung Sung
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.115-121
    • /
    • 1963
  • Aliphatic hydrocarbon gases from rubber pyrolysis have been identified by gas chromatography with tetraethyleneglycol dimethylether column. Rubbers used in this work are polyisoprene, SBR, NBR, polybutadiene, buthyl rubber, polychloroprene and polyurethane rubber. The chromatogram is characteristic for each polymer. Author proposes a method of identification of synthetic rubbers by gas chromatograph of pyrolyzed gas. Sample is pyrolyzed at $450^{\circ}C$ under nitrogen or more effectively helium and gaseous portion, which eliminated liquid condensate, is passed to the column. The appearance of exclusively large peak of isoprene, isobutylene and carbon dioxide shows the presence of polyisoprene, polyisobutylene and polyurethane, respectively. Large peak of butadiene will appear in case of polybutadiene, SBR and NBR, but SBR can be identified through the styrene peak in gas chromatogram of liquid pyrolyzate and NBR can be identified by the evolution of hydrogen cyanide during pyrolysis. Polychloroprene is identified by the evolution of hydrogen chloride. This method could be applied to the identification of copolymer or polymer blend.

  • PDF

Influence of Dicyclopentadiene Resin on Abrasion Behavior of Silica-Filled SBR Compounds Using Different Abrasion Testers

  • Eunji Chae;Seong Ryong Yang;Seok Hyun Cho;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.103-111
    • /
    • 2023
  • The abrasion resistances of silica-filled styrene-butadiene rubber (SBR) compounds prepared with and without dicyclopentadiene resin (SBR-R and SBR-0, respectively) were studied using four different abrasion testers, namely cut and chip (CC), Lambourn, DIN, and laboratory abrasion tester (LAT100). The effect of the resin on the abrasion behavior was elucidated by analyzing the morphologies and size distributions of wear particles. All the wear particles had rough surfaces, but those obtained in the Lambourn abrasion test exhibited relatively smooth surfaces. The size distributions of the wear particles showed different trends depending on the abrasion tester and the rubber compound; however, most of the wear particles were larger than 1000 ㎛. The SBR-R sample showed a wide range of particle sizes (from 63 ㎛) in the LAT100 abrasion test and majority of the wear particles were 500-1000 ㎛, whereas the SBR-0 sample had the most distribution of larger than 1000 ㎛. The abrasion rates of SBR-0 sample were lower than those of the SBR-R sample for the CC and LAT100 abrasion tests, but the Lambourn abrasion test result showed the opposite trend. Addition of the resin influenced the abrasion behavior, however the effect varied depending on the type of abrasion tests.