• Title/Summary/Keyword: styrene-butadiene rubber (SBR)

Search Result 116, Processing Time 0.022 seconds

Improvement of Abrasion and Debris on Styrene-Butadiene-Styrene Block Copolymer with Carboxylated SBR Latex and Zinc Oxide (카르복실화 SBR 라텍스와 산화아연을 이용한 SBS의 내마모성과 데브리스(debris) 개선 연구)

  • Lee, Jin Hyok;Bae, Jong Woo;Kim, Jung Su;Yoon, Yoo-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.225-231
    • /
    • 2013
  • In this study, we observed the effect of carboxylated SBR latex and zinc oxide on styrene-butadiene-styrene( SBS) composites for improving abrasion and debris. SBS composite, which added only silica, showed poor mechanical properties, NBS abrasion, and debris, caused by strong filler-filler interaction of silica. In case of adding carboxylated SBR latex, mechanical properties, NBS abrasion and debris of SBS composite were improved. Because of carboxyl group of carboxylated SBR latex interacted with silanol group of silica. Both carboxylated SBR latex and zinc oxide were added, SBS composite showed highest mechanical properties, NBS abrasion, and debris by forming ion cluster between carboxylated SBR latex and zinc oxide. By FT-IR analysis, ion clusters were confirmed that observed zinc carboxylated group stretch peak at $1550{\sim}1650cm^{-1}$ range. SBS composite, SC-4, showed excellent mechanical properties ; tensile strength $156kgf/cm^2$, elongation 936%, tear strength 59.4kgf/cm ; and excellent abrasion characteristics ; NBS abrasion 338%. Also, debris of SC-4 was minimized and showed wave-shape in fracture surface.

The Strength and Durability of Polymer-Cement Mortars (폴리머-시멘트 모르타르의 강도와 내구성)

  • Hwang, Eui-Hwan;Hwang, Taek-Bung;Ohama, Yoshihiko
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.786-794
    • /
    • 1994
  • The strength and durability of polymer-cement mortars were investigated. The specimens of polymer-cement mortar were prepared by using styrene-butadiene rubber(SBR) latex, ethylene-vinyl acetate(EVA) emulsion and polyacrylic ester(PAE) emulsion with various polymer-cement ratios(5, 10, 15, 20wt%). For the evaluation of durability of polymer-cement mortars, freezing-thawing, acid resistance and heat resistance tests were conducted. With an increase of polymer-cement ratio, the frost resistance of polymer-cement mortars was greatly improved, but acid and heat resistance were deteriorated. The compressive and flexural strengths of SBR polymer-cement mortars were improved with an increase of polymer-cement ratio, whereas those of EVA and PAE polymer-cement mortars reached maximum value at polymer-cement ratio of 10wt%.

  • PDF

Swelling Ratio and Mechanical Properties of SBR/organoclay Nanocomposites according to the Mixing Temperature; using 3-Aminopropyltriethoxysilane as a Modifier and the Latex Method for Manufacturing (유기화제로 3-aminopropyltriethoxysilane 을 이용하여 라텍스법으로 제조된 SBR/organoclay 컴파운드의 혼련 온도에 따른 팽윤도 및 기계적 물성)

  • Kim, Wook-Soo;Park, Deuk-Joo;Kang, Yun-Hee;Ha, Ki-Ryong;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.112-121
    • /
    • 2010
  • In this study, styrene butadiene rubber(SBR)/organoclay nanocomposites were manufactured using the latex method with 3-aminopropyltriethoxysilane(APTES) as a modifier. The X-ray diffraction(XRD), transmission electron microscopy(TEM) images, Fourier transform infrared(FTIR) spectroscopy, swelling ratio and mechanical properties were measured in order to study the interaction between filler and rubber according to the mixing temperature in the internal mixer. In the case of SBR/APTES-MMT compounds, the dispersion of the silicates within the rubber matrix was enhanced, and thereby, the mechanical properties were improved. The characteristic bands of Si-O-C in APTES disappeared after hydrolysis reaction in the MMT-suspension solution and the peak of hydroxyl group was increased. Therefore the formation of chemical bonds between the hydroxyl group generated from APTES on the silicate surface and the ethoxy group of bis(triethoxysilylpropyl) tetrasulfide(TESPT) was possible. Consequently, the 300% modulus of SBR/APTES-MMT compounds was further improved in the case of using TESPT as a coupling agent. However, the silanization reaction between APTES and TESPT was not affected significantly according to the increase of mixing temperature in the internal mixer.

Studies on the Physical Properties and Application of EPDM-Polymer Blends. Part 6. Physical Properties for EPDM-NR-SBR Blends (EPDM과 각종(各種) Polymer의 Blend에 의(依)한 성능변화(性能變化) 및 그 응용(應用)에 관(關)한 연구(硏究)(제6보(第6報)) EPDM과 Natural Rubber 및 Butadiene-Styrene Rubber의 Blend에 대(對)하여)

  • Kim, Joon-Soo
    • Elastomers and Composites
    • /
    • v.7 no.2
    • /
    • pp.183-192
    • /
    • 1972
  • As a series of tile studies of EPDM-Polymer blends, tile experiment are concentrated to the investigation of the physical properties of tile EPDM-NR-SBR blends. The results are shown as follows: 1. In blending, tensile strength decreased with increase in EPDM contents, especially the ratio of EPDM/NR-SBR is 75/25. 2. Elongation and tear strength were much influenced by blending, especially the ratio of EPDM/NR-SBR is 50/50. 3. Ozone resistance is much improved after blending. It was effective more than tile ratio of EPDM/NR-SBR is 25/75. 4. Aging resistance is much improved after blending. It was effective more than the ratio of EPDM/NR-SBR is 50/50. 5. Hardness increased with increase in EPDM contents and on the other hand, abrasion resistance decreased.

  • PDF

Effects of Chemical Surface Modification of Carbon Black on Vulcanization and Mechanical Properties of Styrene-Butadiene Rubber Compound (SBR 컴파운드의 가황 및 기계적 성질에 미치는 카본블랙 표면의 화학적 개질의 영향)

  • Rhee, John-M.;Kim, Wan-Doo;Kaang, Shin-Young;Chang, Young-Wook;Park, Soo-Jin;Nah, Chong-Woon
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.44-51
    • /
    • 2001
  • To see the effect of chemical surface modification, the carbon black surfaces were treated with three types of chemicals (KOH, $H_3PO_4$, and benzene). Vulcanization and mechanical properties of a styrene-butadiene rubber (SBR) were investigated depending on the chemical treatments. The surface free energy increased considerably with the treatments by both the acid (HCB) and base (KCB), but only a slight increase was observed for benzene treatment(BCB). The BCB showed the highest level of the London dispersive component. The vulcanization reaction was found to be faster in the order of KCB-SBR> BCB-SBR> VCB-SBR(virgin) > HCB-SBR. The difference in minimum and maximum torque of rheocurve, representing the degree of crosslinking, was found to be higher for the BCB-SBR compared to those of VCB-SBR, KCB-SBR, and HCB-SBR. The BCB-SBR and KCB-SBR showed the improved tensile and dynamic mechanical properties. A linear relationship was found to exist between the London dispersive component of surface free energy and mechanical properties.

  • PDF

The Study on the Optimum Loading of Carbon Black for the Different Kind of Rubber Compounds (고무종류에 따른 카본블랙의 최적 투입량에 관한 연구)

  • Yoon, Chan Ho;Lee, Ihn;Cho, Chun Teck;Chae, Kyu Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.565-572
    • /
    • 1996
  • The optimum loading of carbon black was studied for the rubber compounds of natural rubber(NR), butadiene rubber(BR), and styrene-butadiene rubber(SBR) with different amount of oil. The optimum loading of carbon black was determined by the volume ratio of carbon black and L factor of Lee's theory. The optimum loading of carbon black was confirmed by the examination of physical properties of the rubbers. The optimum loading amounts of carbon black for the each rubber compound were 60 phr for NR, 57 phr for BR, 65 phr for SBR-A, 70 phr for SBR-B, and 76 phr for SBR-C, respectively. The optimum loading of carbon black was increased by 5 phr for every increment of 20 phr of oil content. It was revealed that the optimum loading amount of carbon black determined by L factor is closely related to the tensile strength of the rubber compounds. The optimum loading amount of carbon black was observed at the amount which shows the maximum value of tensile strength.

  • PDF

Studies on the Physical Properties and Application of EPDM-Polymer Blends. Part 2. Physical Properties for EPDM-SBR Blends (EPDM과 각종(各種) Polymer의 Blend에 의(依)한 성능변화(性能變化) 및 그 응용(應用)에 관(關)한 연구(硏究) (제2보(第2報)) EPDM과 Butadiene-Styrene Rubber의 Blend에 대(對)하여)

  • Kim, Joon-Soo
    • Elastomers and Composites
    • /
    • v.6 no.2
    • /
    • pp.73-79
    • /
    • 1971
  • As a series of the studies of EPDM-Polymer blends, the experiments are concentrated to the investigation of the physical properties of the EPDM-SBR blends. The results are shown as follows: 1. Tensile strength decreased with increase in EPDM contents and the decreasing value was good results than NR blending. 2. It was found that the aging were much improved after blending and experiments data was good results than NR blending.

  • PDF

Influence of Silane Coupling Agent on Properties of Filled Styrene-Butadiene Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.285-291
    • /
    • 2000
  • Influence of silane coupling agent, bis-(3-(triethoxisilyl)-propyl)-tetrassulfide, on cure characteristics and bound rubber content of filled styrene-butadiene rubber (SBR) compounds and on physical properties of the vulcanizates was studied. Carbon black-filled and silica-filled compounds were compared. Content of the bound rubber increased with increased content of the silane coupling agent and this trend was shown more clearly in the silica-filled compounds. Optimum cure time of the carbon black-filled compound increased with increase of the silane content, while that of the silica-filled one decreased. Cure rate of the carbon black-filled compound became slower as the silane content increased while that of the silica-filled one became faster. By increasing the silane content, the minimum torque decreased and the delta torque increased. Physical properties of the silica-filled vulcanizate were found to be improved by adding the silane coupling agent. However, for the carbon black-filled vulcanizates, the tensile strength and tear resistance decreased with increase of the silane content. The differences between the carbon black-filled and silica-filled compounds were explained by difference in the reactivities of the fillers with the silane.

  • PDF

Migration Behaviors of Antiozonants in Triblend Vulcanizates of NR, SBR, and BR (NR, SBR, BR의 세가지 고무로 이루어진 가류물에서 노화방지제의 이동 거동)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.35 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • Influence of rubber composition on migration of antiozonants to the surface in ternary rubber-based vulcanizates composed of natural rubber (NR) styrene-butadiene rubber (SBR), and butadiene rubber (BR) was studied. Of the three rubbers, contents of two rudders were same and only the other one content was different (variable rubber) IPPD and HPPD were employed as antiozonants. Migration experiments were performed at $60^{\circ}C$ for 21 days and outdoors for 4 months. Migration rates of the antiozonants increase by increasing the content ratio of the variable rubber in the vulcanizares from NR/SBR/BR=1/1/0.2 to 1/1/1 and then decrease with an increase of the content ratio of the variable rudder from 1/1/1 to 1/1/5. Migration behaviors of the antiozonants in the ternary rudder-based vulcanizates depending on the rubber composition were explained by the intermolecular interactions between rubber and antiozonant, by the solubility difference of the antiozonants for the rubbers, and by the interface formed between dissimilar rubbers in the triblends.

  • PDF

Effect of Changing of Filling Materials in NR-SBR Type Elastomer Based Rubber Materials on Mechanical Properties (필러재료의 변화에 따른 NR-SBR 타입 엘라스토머 기반 고무재료의 기계적물성)

  • Bulbul, Saban;Yasar, Mustafa;Akcakale, Nuretttin
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.664-670
    • /
    • 2014
  • The effects of different filling materials and stabilizers in polymer based materials that are used as shoe soles in the shoemaking industry on the mechanical properties (strength, failure, tensile, tearing, bending etc.) of the final products have been examined in this study. Natural rubber (NR RSS3) and styrene-butadiene rubber (SBR 1502) were used as the main matrix material. New compounds were formed by replacing the fillings in the general compound of the existing factory ($SiO_2$, $CaCO_3$) with 40% (1200 g) blast furnace flue dust, rice husk, reclaimed rubber (recycled) and wood ash. Comparison of the new compounds with the existing compounds revealed a decrease in hardness, density, dimension stability, bending, tearing, % elongation and failure strength and an increase in wearing.