• Title/Summary/Keyword: styrene butadiene rubber (SBR)

Search Result 116, Processing Time 0.023 seconds

A Study on the Freezing and Thawing Resistance of Hardened Concrete under Sea Water Environment (해수 환경하 콘크리트 경화체의 동결융해 저항성에 관한 연구)

  • 정용철;김원기;정재동;한기성;최상홀
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.3
    • /
    • pp.157-166
    • /
    • 1992
  • 해수환경하의 콘크리트 구조물은 동결융해의 반복에 의한 물리적인 침식과 해수중에 용존하는 각종의 이온들의 침투로 인한 화학적 침식에 의해 현저한 성능저하현상을 나타내는 것으로 알려져있다. 본 연구는 포졸란계 혼합재인 플라이 애쉬, 슬래그, 슬리카 흄과 폴리머계 혼합재인 Ethylene Vinyl Acetate(EVA), Styrene-Butadiene Rubber(SBR)를 사용하여 제조한 콘크리트 경화체의 해수환 경하에서 동결융해 저항성에 미치는 혼합재의 종류 및 첨가량의 영향, W/C의 영향을 비교 검토한 실험적 연구이다. 콘크리트의 동결융해 저항성을 위해서는 공기연행이 필수적이며, 공기연행시킨 경우 W/C가 낮을수록 동결융해 저항성이 우수하였다. 해수중에서의 동결융해 저항성은 슬래그분말을 첨가할 때 우수하였으며, 폴리머계 혼합재에서는 EVA가 우수한 결과를 나타내었다.

A Comparative Study Characterization Methods of Carbon Black Dispersion in Solution and Emulsion SBR Compounds Prepared at Various Mixing Levels (Emulsion과 Solution SBR Compound에 있어서 혼합시간(混合時間)에 따른 Carbon Black분산(分散)의 분석방법(分析方法)들 사이의 비교연구(比較硏究))

  • Lee, Sung-Duk
    • Elastomers and Composites
    • /
    • v.24 no.3
    • /
    • pp.193-202
    • /
    • 1989
  • An experimental study of the development of carbon black dispersion by an internal mixer and its characterization is presented. We describe the measurement of carbon black agglomerate size and related characteristics using four different experimental techniques : optical microscopy, scanning elctrion microscopy, surface roughness, and electrical couductivity. The results from these different experiments are compared uning the same carbon black for a series of six different butadiene-styrene copolymers. The results from the different techniques are cross plotted and are critically discussed. It is found that surface but then sharply deteriorate. At subsequent stages of mixing optical microscopy seemed the most reliable measure.

  • PDF

Service life prediction of rubber seal materials for immersion tunnel by accelerated thermal degradation tests (가속 열 노화시험을 이용한 침매터널용 고무 씰 소재의 사용수명 예측)

  • Park, Joon-Hyung;Park, Kwang-Hwa;Park, Hyeong-Geun;Kwon, Young-Il;Kim, Jong-Ho;Sung, Il-Kyung
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.275-290
    • /
    • 2009
  • This paper considers accelerated thermal degradation tests which are performed for rubber seal materials used for undersea tunnels constructed by immersion method. Three types of rubber seals are tested; rubber expansion seal, omega seal, and shock absorber hose. Main ingredient of rubber expansion seal is EPDM(Ethylene Propylene Diene Monomer) and that of both omega seal and shock absorber hose is SBR(Styrene Butadiene Rubber). The accelerated stress is temperature and an Arrhenius model is introduced to describe the relationship between the lifetime and the stress. From the accelerated degradation tests, dominant failure mode of the rubber seals is found to be the loss of elongation. The lifetime distribution and the service life of the rubber seals at use condition are estimated from the test results. The acceleration factor for three types of rubber seals are also investigated.

  • PDF

Influence of Molecular Size of Liquid BR on Properties of Silica-Filled SBR Compounds (액상 BR의 분자 크기가 실리카로 보강된 SBR 배합물의 특성에 미치는 영향)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.162-168
    • /
    • 2001
  • Low molecular weight polybutadiene (liquid BR) improves the filler dispersion in a silica-filled styrene-butadiene rubber (SBR) compound. In the present work, influence of molecular weight or the liquid BR on properties of a silica-filled SBR compound was studied. Minimum and maximum torques in the rheocurve for the compound containing the liquid BR with higher molecular weight (HLBR) are lower than those for the compound containing the liquid BR with lower one (LLBR) while the delta torques are nearly the same. Mooney scorch time of the compound containing HLBR is faster than that of the compound containing LLBR. Modulus or the compound containing HLBR is lower than that of the compound containing LLBR while tensile strength of the former is higher than that of the latter. The elongation at break of the former is also longer than that of the latter. Stability for the thermal aging at $90^{\circ}C$ for 3 days is less favorable for the former than for the latter.

  • PDF

Effect of Surfactant on the Physical Properties and Crosslink Density of Silica Filled ESBR Compounds and Carbon Black Filled Compounds

  • Hwang, Kiwon;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.39-47
    • /
    • 2018
  • Styrene-butadiene rubber (SBR) is widely used in tire treads due to its excellent abrasion resistance, braking performance, and reasonable cost. Depending on the polymerization method, SBR is classified into solution-polymerized SBR (SSBR) and emulsion-polymerized SBR (ESBR). ESBR is less expensive and environmentally friendlier than SSBR because it uses water as a solvent. A higher molecular weight is also easier to obtain in ESBR, which has advantages in mechanical properties and tire performance. In ESBR polymerization, a surfactant is added to create an emulsion system with a hydrophobic monomer in the water phase. However, some amount of surfactant remains in the ESBR during coagulation, making the polymer chains in micelles clump together. As a result, it is well-known that residual surfactant adversely affects the physical properties of silica-filled ESBR compounds. However, researches about the effect of residual surfactant on the physical properties of ESBR are lacking. Therefore, in this study we compared the effects of remaining surfactant in ESBR on the mechanical properties of silica-filled and carbon black-filled compounds. The crosslinking density and filler-rubber interaction are also analyzed by using the Flory-Rehner theory and Kraus equation. In addition, the effects of surfactant on the mechanical properties and crosslinking density are compared with the effects of TDAE oil (a conventional processing aid).

Phase Inversion Emulsification and Enhancement of Physical Properties for Cationic Emulsified Asphalt

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.265-273
    • /
    • 2015
  • In this work, the emulsified asphalt with high phase stability and storage stability was prepared by using phase inversion emulsification and the surfactant mixed with cationic and nonionic surfactants. It was found that the asphalt together with Span 20, nonionic surfactant and DDA (Dimethyl Dodecyl Amine), cationic surfactant showed the most stable phase. The phase stability of the emulsified asphalt, therefore, was investigated through the particle size with mixed surfactant content, rheology behavior and Zeta potential value; the particle size decreased with the increase of the mixed surfactant content but the viscosity increased. The shear thinning behaviors and the Zeta potential value with 50 mV~60 mV were shown, which was found to be considered stable. In addition, SBR latex(Styrene-butadiene-rubber) and water dispersed Epoxy (EPD) were used to enhance the physical properties of the emulsified asphalt. The swelling and adhesion features of the emulsified asphalt were also studied with $CaCO_3$, Silica, and Montmorillonite (MMT). It was shown that the addition of SBR latex and MMT can be another way to improve the physical properties of the emulsified asphalt in that the lowest swelling feature was found.

Vibration Damping Ratio Performance Evaluation According to the Polymer Mixing Rate of SBR-based Polymer Modified Mortar through Ultrasonic Pulse Analysis (초음파 펄스 분석을 통한 SBR계 폴리머 혼입 모르타르의 폴리머 혼입률에 따른 진 동감쇠비 성능 평가)

  • Jeong, Min-Goo;Jang, Jong-Min;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.543-551
    • /
    • 2022
  • The mechanical performance and vibration damping ratio performance of a specimen according to the polymer mixing rate were evaluated for polymer modified mortar. As a polymer, Styrene Butadiene Rubber(SBR) liquid polymer with a solid content of about 49~51% was used, and the polymer content was increased by liquid 5%. The specimen was 40*40*160(mm), and after curing, compressive strength, flexural strength, and vibration damping ratio were measured using the ultrasonic pulse method. As a result, it was found that the compressive strength decreased as the polymer was mixed, but the flexural strength was increased. The vibration damping ratio increased by 11% at 5% polymer, 28% at 10% polymer, 33% at 15% polymer, and 72 at 20% polymer. I was found that the incorporation of the polymer was very effective to reduce the vibration of the mortar. In addition, through SEM and SEM-EDS analysis, it is determined that the cause of vibration reduction due to polymer mixing is that the polymer film formed in the transition zone of aggregate and internal voids buffered the vibration of the mortar inside. Taken together, in the scope of this study, the appropriate polymer mixing ratio for reducing the vibration of mortar is judged to be about 7.5%.

Effect of Binder and Electrolyte on Electrochemical Performance of Si/CNT/C Anode Composite in Lithium-ion Battery (리튬이온 이차전지에서 Si/CNT/C 음극 복합소재의 전기화학적 성능에 대한 바인더 및 전해액의 효과)

  • Choi, Na Hyun;Kim, Eun Bi;Yeom, Tae Ho;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.327-333
    • /
    • 2022
  • In this study, silicon/carbon nanotube/carbon (Si/CNT/C) composites for anode were prepared to improve the volume expansion of silicon used as a high-capacity anode material. Si/CNT were prepared by electrostatic attraction of the positively charged Si and negatively charged CNT and then hydrothermal synthesis was performed to obtain the spherical Si/CNT/C composites. Poly(vinylidene fluoride) (PVDF), polyacrylic acid (PAA), and styrene butadiene rubber (SBR) were used as binders for electrode preparation, and coin cell was assembled using 1.0 M LiPF6 (EC:DMC:EMC = 1:1:1 vol%) electrolyte and fluoroethylene carbonate (FEC) additive. The physical properties of Si/CNT/C anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances of lithium-ion batteries were investigated by charge-discharge cycle, rate performance, dQ/dV and electrochemical impedance spectroscopy tests. Also, it was confirmed that both capacity and rate performance were significantly improved using the PAA/SBR binder and 10 wt% FEC-added electrolyte. It is found that Si/CNT/C have the reversible capacity of 914 mAh/g, the capacity retention ratio of 83% during 50 cycles and the rate performance of 70% in 2 C/0.1 C.

Effect of Addition of Ground Granulated Blast-furnace Slag on Strength Properties of Autoclaved Polymer-Modified Concrete (오토클레이브 양생 폴리머 시멘트 콘크리트의 강도성상에 미치는 고로슬래그 미분말 혼입의 영향)

  • 주명기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.608-614
    • /
    • 2002
  • The effects of slag content and polymer-binder ratio on the strength properties of autoclaved SBR-modified concretes using ground granulated blast-furnace slag(slag) and a styrene-butadiene rubber (SBR) latex are examined. As a result, the compressive and tensile strengths of the autoclaved SBR-modified concretes using slag increase with increasing slag content, and reach a maximum at a slag content 40%, and increase with increasing polymer-binder ratio. In particular, the autoclaved SBR-modified concretes with a slag content of 40% provide about three times higher tensile strength than unmodified concretes. Such high strength development is attributed to the high tensile strength of SBR polymer and the improved bond between cement hydrates and aggregates because of the addition of SBR latex.

A Correlation Between Crack Growth and Abrasion for Selected Rubber Compounds

  • Lee, Hyunsang;Wang, Wonseok;Shin, Beomsu;Kang, Seong Lak;Gupta, Kailash Chandra;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • A typical wear pattern was reported to resemble the fatigue crack growth behavior considering its mechanism, especially for amorphous rubbers such as styrene-butadiene rubber (SBR). In this study, the wear and crack growth rates were correlated using two separate experiments for carbon black and silica-reinforced selected rubber compounds. The wear rate was determined using a blade-type abrasion tester, where the frictional energy input during wearing was measured. The crack propagation rate was determined under different tearing energy inputs using a home-made fatigue tester, with a pure-shear test specimen containing pre-cracks. The rates of abrasion and crack propagation were plotted on a log-log scale as a function of frictional and tearing energies, respectively. Reasonable agreement was observed, indicating that the major mechanism of the abrasion pattern involved repeated crack propagation.