• Title/Summary/Keyword: stx gene

Search Result 28, Processing Time 0.036 seconds

Production of expressed protein from cloned ShigatoxinG 2e gene and Receptor Binding Affinity of the toxin (재조합 Shigatoxin 2e 유전자의 발현단백 생산 및 독소의 수용체 결합 친화성 확인)

  • Dong, Bun-youn;Kim, Sang-Hyun;Kim, Yeong-Il;Cho, Hyun-Ho;Lee, Woo-won;Kim, Kon-Sup;Kang, Ho-Jo;Kim, Yong-Hwan
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.251-257
    • /
    • 2004
  • This study was designed to determine optimal condition for expression of cloned Shigatoxin2e(Stx2e) gene from transformed E. coli PED18, to compare the cytotoxicity titer between cloned Stx2e and Stx2e from original strain, and to confirm of receptor binding affinity of Stx2e for use of development of receptor binding ELISA to detect of Stx2e. The optimum composition of medium for expression of Stx2e gene in E.coli host-vector system was definded as the medium containing 0.5% glucose and 0.5 mM IPTG. The cytotoxicity titer of expressed Stx2e for Vero cell was 1000 fold higher than that of Stx2e from original strain AY93258. The binding affinity of Stx2e to receptor globotetraosyl ceramide($Gb_4$) was confirmed by immunobloting.

Characteristics of Bacteriophage Isolates and Expression of Shiga Toxin Genes Transferred to Non Shiga Toxin-Producing E. coli by Transduction

  • Park, Da-Som;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.710-716
    • /
    • 2021
  • A risk analysis of Shiga toxin (Stx)-encoding bacteriophage was carried out by confirming the transduction phage to non-Stx-producing Escherichia coli (STEC) and subsequent expression of the Shiga toxin genes. The virulence factor stx1 was identified in five phages, and both stx1 and stx2 were found in four phages from a total of 19 phage isolates with seven non-O157 STEC strains. The four phages, designated as ϕNOEC41, ϕNOEC46, ϕNOEC47, and ϕNOEC49, belonged morphologically to the Myoviridae family. The stabilities of these phages to temperature, pH, ethanol, and NaClO were high with some variabilities among the phages. The infection of five non-STEC strains by nine Stx-encoding phages occurred at a rate of approximately 40%. Non-STEC strains were transduced by Stx-encoding phage to become lysogenic strains, and seven convertant strains had stx1 and/or stx2 genes. Only the stx1 gene was transferred to the receptor strains without any deletion. Gene expression of a convertant having both stx1 and stx2 genes was confirmed to be up to 32 times higher for Stx1 in 6% NaCl osmotic media and twice for Stx2 in 4% NaCl media, compared with expression in low-salt environments. Therefore, a new risk might arise from the transfer of pathogenic genes from Stx-encoding phages to otherwise harmless hosts. Without adequate sterilization of food exposed to various environments, there is a possibility that the toxicity of the phages might increase.

Characterization and isolation of shiga toxin-producing Escherichia coli from Bovine feces and Carcass (소의 분변과 도체에서 shiga toxin-producing Escherichia coli의 분리와 특성)

  • Chae, Hee-Sun;Kim, Neung-Hee;Han, Hye-Jin;Son, Hong-Rak;Kim, Chang-Ki;Kim, Sun-Heung;Lee, Jung-Hark;Kim, Jong-Taek
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.3
    • /
    • pp.241-249
    • /
    • 2009
  • Shiga toxin (Stx)-producing Escherichia coli (STEC) strains can cause broad spectrum of human disease, including diarrhea, hemorrhagic colitis, and the life-threatening hemolytic uremic colitis (HUS). We examined 868 samples was taken from bovine feces and carcass from January to December 2008 in Seoul. Twenty two (9.5%) shiga toxin -producing Escherichia coli were isolated from the 230 of bovine feces, and two (0.31%) were isolated from the 638 of carcasses. Serotype of E. coli isolates were O157 (10, 41.6%), O26 (10, 41.6%), O111 (1, 4.2%) and UT (3, 12.6%). In PCR, the isolates displayed three different stx gene combination (stx1 [2, 8.4%]), stx2 [3, 12.6%] and stx1 and stx2 [19,87.5%]). The eaeA and hlyA gene were found in 11 (45.8%) of the 24 strains. Saa gene was present only one strains (4.2%). Toxin typing using reverse passive latex agglutination test showed the same result in VT 1. But it showed different result in VT 2. In antimicrobial susceptibility test, all isolates were sensitive to amikacin, amoxicillin/clavulanic acid, ciprofloxacin and colistin. Eighteen strains (75.0%) of 24 isolates showed the multi-resistant patterns with over 3 drugs. PFGE was performed after the genomic DNA of twenty four isolates was digested with Xba I. the 24 isolates showed 7 (A~G) PFGE type.

Induction of Deletion Mutation for the Enzymatic Domain in the Shigatoxin2e A Subunit Gene of Esherichila coli O139 Isolates and Expression of Mutated Protein (분리 대장균 O139의 Shigatoxin2e A 유전자의 효소 활성부에 대한 결손변이 유발 및 변이 단백질의 발현)

  • Cho Eun-jung;Kim Do-kyong;Kim Sang-hyun;Kim Yeong-il;Lee Chul-hyun;Lee Woo-won;Son Won-geun;Shin Jong-Uk;Kim Yong-hwan
    • Journal of Veterinary Clinics
    • /
    • v.22 no.4
    • /
    • pp.386-391
    • /
    • 2005
  • This study was done to produce a mutated protein inactivated cytotoxicity of Shigatoxin 2e (Stx2e) of E.coli O139 isolates by deletional mutagenesis of Stx2e A subunit gene encoding active-site cleft of enzymatic domain in ST2e holotoxin. Cytotoxicity of the toxoid expressed from the mutant Stx2e gene was compared with wild type Stx2e for development of vaccine candidate. A recombinant plasmid pED18 containing Stx2e gene ot E.coli O139 isolates was used to generate mutation plasmid. Deletion mutagenesis was conducted for Stx2e A subunit gene encoding enzymatically active domain by polymerase chain reaction (PCR) using ot designed primer to induce deletional mutation. DNA sequence analysis was confirmed that the pentamer (Typ 202- Ser 206) that lies within the proposed active-site cleft in the second region was completely deleted. A DNA fragment of 1.1 kb that encode the new mutant Stx2eA gene was inserted into plasmid pRSET vector digested with EcoRV-Hind III and named pEDSET The PEDSET was transformed in E. coli for expression of mutant protein and the protein was confirmed by SDS-PACE and Western-blotting. The protein expressed by the mutant was tested to confirm the reduction of cytotoxic activities on Vero cell using microcytotoxicity assay compared with wild type Stx2e, the cytotoxicity of deletional mutant protein was at least reduced by 3,000-fold on Vero cell.

Identification and characterization of Shiga toxin-producing Escherichia coli isolated from diarrhea in calves (송아지 설사분변으로부터 Shiga toxin-producing Escherichia coli 의 분리 및 특성규명)

  • Lim, Keum-Gi;Kang, Mun-Il;Kim, Snag-Ki;Nam, Kyung-Woo;Park, Hyun-Joo;Park, Jin- Ryang;Cho, Kyoung-Oh;Lee, Bong-Joo
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.2
    • /
    • pp.135-142
    • /
    • 2006
  • Shiga toxin (stx) producing Escherichia coli (STEC) causes various clinical signs in animal and human. In this study, 255 fecal samples from calves showing diarrhea were collected from cattle farms in Chonnam province during the period from January 2005 to July 2005. Twenty six STEC (10%) were isolated from 255 fecal samples by PCR. The isolates displayed three different stx combinations (stx1 [69%], stx1 and stx2 [15%], and stx2 [38%]). The isolates were further studied for virulence associated genes and antimicrobial resistance to define the virulence properties. Intimin (eaeA), enterohemolysin (hlyA), and lipopolysaccharide (rfbE) virulence genes were detected in 6 (23%), 7 (26%), and 1 (3.8%) of the isolates, respectively, by PCR. One isolate possessing rfbE gene was typed as E. coli 0157 : H7 by agglutination test with O and H antisera. All 26 isolates showed susceptibility to amikacin (100%) and the majority of isolates showed high susceptibility to gentamicin (88.5%) and chloramphenicol (73.1%). But all isolates were resistant to penicillin. These results may provide the basic knowledge to establish strategies for the treatment and prevention of enteric disease in calves.

Evaluation of the virulence genes and Shiga toxin-producing abilities of Escherichia coli field isolates causing edema disease in pigs (국내 분리 돼지 부종병 대장균의 병원성 유전자 및 시가독소 생성 검증)

  • Seo, Byoung-Joo;Jeong, Chang-Gi;Kang, A-Rum;Cho, Ho-Seong;Kim, Won-Il
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.2
    • /
    • pp.87-92
    • /
    • 2016
  • Porcine edema disease (ED) is a communicable disease of pigs caused by infection with Shiga toxin (Stx)-producing Escherichia coli (STEC) which expresses F18 fimbriae and/or Stx type 2e (Stx2e). While STEC causes a severe illness including hemorrhagic colitis and hemolytic-uremic syndrome in humans, it induces damage to the vascular endothelium, which results in edema, hemorrhage, and microthrombosis, leading in high mortality in pigs. In the present study, we cultured Stx2e-producing E. coli field isolates from conventional pig farms that experienced sudden deaths previously with symptoms similar to porcine edema disease, which were further investigated with Shiga toxin profiles. A total of 43 strains were identified from the collected samples by F18 or Stx2e specific PCR. Based on the PCR, 42 isolates out of 43 isolates were proved to carry one of F18 or Stx2e genes and 14 isolates to carry both F18 and Stx2e genes. All of the 30 isolates that harbored Stx2e gene induced the cytopathic effect (CPE) in vero cells and especially, the isolate 150229 produced the highest level of Shiga toxin. Therefore, we identified the virulence genes (F18 and Stx2e) and demonstrated Shiga toxin-producing abilities from porcine edema disease causing E. coli filed isolates. These results suggested that one of the isolates could be a vaccine antigen candidate against STEC through further investigating to elicit an immune response.

Antibiotic Resistance and Virulence Potentials of Shiga Toxin-Producing Escherichia coli Isolates from Raw Meats of Slaughterhouses and Retail Markets in Korea

  • Park, Hyun-jung;Yoon, Jang Won;Heo, Eun-Jeong;Ko, Eun-Kyoung;Kim, Ki-Yeon;Kim, Young-Jo;Yoon, Hyang-Jin;Wee, Sung-Hwan;Park, Yong Ho;Moon, Jin San
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1460-1466
    • /
    • 2015
  • In this study, the prevalence of Shiga toxin-producing Escherichia coli (STEC) was investigated among raw meat or meat products from slaughterhouses and retail markets in South Korea, and their potential for antibiotic resistance and virulence was further analyzed. A total of 912 raw meats, including beef, pork, and chicken, were collected from 2008 to 2009. E. coli strains were frequently isolated in chicken meats (176/233, 75.9%), beef (102/217, 42.3%), and pork (109/235, 39.2%). Putative STEC isolates were further categorized, based on the presence or absence of the Shiga toxin (stx) genes, followed by standard O-serotyping. Polymerase chain reaction assays were used to detect the previously defined virulence genes in STEC, including Shiga toxins 1 and Shiga toxin 2 (stx1 and 2), enterohemolysin (ehxA), intimin (eaeA), STEC autoagglutination adhesion (saa), and subtilase cytotoxin (subAB). All carried both stx1 and eae genes, but none of them had the stx2, saa, or subAB genes. Six (50.0%) STEC isolates possessed the ehxA gene, which is known to be encoded by the 60-megadalton virulence plasmid. Our antibiogram profiling demonstrated that some STEC strains, particularly pork and chicken isolates, displayed a multiple drug-resistance phenotype. RPLA analysis revealed that all the stx1-positive STEC isolates produced Stx1 only at the undetectable level. Altogether, these results imply that the locus of enterocyte and effacement (LEE)-positive strains STEC are predominant among raw meats or meat products from slaughterhouses or retail markets in Korea.

Identification and characterization of shiga toxin-producing Escherichia coli isolated from the feces of slaughtered pigs (도축돈 장분변으로부터 Shiga Toxin-Producing Escherchia coli의 분리 와 성상)

  • Song, Young-hwan;Kim, Ji-young;Chae, Mi-kyung;Park, Chang-sik;Kim, Myung-chul;Jun, Moo-hyung
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.4
    • /
    • pp.551-559
    • /
    • 2004
  • Shiga toxin-producing Escherichia coli (STEC) causes various clinical signs in human and animals, and has been indicated as a global enteropathogen with zoonotic importance. In this study, the feces of healthy pigs were collected from the slaughtered pigs of Daejon abattoir during the period from December 2001 to October 2002. Of 326 specimens, 13 STEC were confirmed by culture, PCR and colony hybridization. The isolates were further studied for toxin types, pathogenic factors, plasmid profiles, and antimicrobial resistance to characterize the genetic and toxigenic properties. In PCR, all of 13 isolates were evident to have shiga toxin gene (stx). Of 13 isolates stx1 gene was detected in 4 and stx2 gene in 9. The genes of eaeA, hlyA and rfbE were not present in any isolates. In colony hybridization using shiga toxin common primer (STXc), 2 to 9 per 100 colonies subcultured from 13 isolates showed the positive reaction. In the examination for plasmid profiles of the isolates, one to eleven plasmids with varying sizes of 1.0 Kb to 100 Kb were detected, and the 13 STEC could be classified into four groups by the plasmid patterns. The antimicrobial resistance patterns of the isolates were comparably corresponded with the plasmid profile patterns.

Study on Convergence Technique Using the Antimicrobial Resistance and Virulence Genes Analysis in Escherichia coli (대장균의 항균제 내성과 독력 유전자의 분석을 활용한 융합기술연구)

  • Han, Jae-Il;Sung, Hyun-Ho;Park, Chang-Eun
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.77-84
    • /
    • 2015
  • This study was conducted to investigate the characteristics of antibiotic resistant E. coli. its antibiotic susceptibility and pathogenicity were analyzed via molecular convergence technique, for the relationship of antibiotic susceptibility and pathogenicity. The 60 isolated strains consisted of ESBL(+)(8) and ESBL(-)(52) strains. The ESBL(+)(8) strains consisted of 2 strains without a pathogenic gene, stb(3), flich7(1), and flich7-eae(2). The ESBL(-)(52) strains consisted of 26 strains without a pathogenic gene, stx1(3), stb(10), flich7(2), eae(2), stx1-flich7(2), stx1-stb(4), flich7-stb(2), and flich7-stb-eae(1). In conclusion, antibiotic resistance is increasingly, Focused on molecular convergence, showed the correlation of pathogenicity with antibiotic resistance was poor. However, It will be able to find the exact pathogenic factor in the future through convergence technique including the analysis of virulence genes.

Rapid Detection for Shiga Toxin Type 1 (Stxl) by Using Two-Step Ultra-Rapid Real-Time (URRT) PCR (초고속 이단계 PCR에 의한 Shiga 독소 타입 1의 신속 검출법)

  • Kim, Il-Wook;Kang, Min-Hee;Kwon, Soon-Hwan;Cho, Seung-Hak;Yoon, Byoung-Su
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.203-211
    • /
    • 2008
  • Rapid detection-method for Shiga toxin type 1 that was produced from Shiga toxin-producing Escherichia coli (STEC) was developed by two-step ultra-rapid real-time (URRT) PCR. The specific primers were deduced from 80 bp stable region of stx type 1 (stxl) gene among various informations of STEC strains. URRT PCR is a microchip-based real-time PCR using 6 ${\mu}l$ of reaction volume with extremely short denaturation step and annealing/extension step (1 sec, 3 sec, respectively) in each cycle of PCR. Using the stx1-specific URRT PCR, 35 cycled PCR were finished in time of 6 min and 38 see, also measured 7 min and 28 see including melting temperature (Tm) analysis. The detection-limit of stxl-specific URRT-PCR was estimated until 3 colony forming units / PCR with products with stable Tm at $81.42{\pm}0.34^{\circ}C$. In the applications to various STEC strains and contaminated genomic DNAs, stx1-specific URRT-PCR were tested and shown that it would be expected an useful method for the rapid detection of stx1-coded STEC strains.