• Title/Summary/Keyword: studentized deleted residual

Search Result 1, Processing Time 0.014 seconds

Multiple Imputation Reducing Outlier Effect using Weight Adjustment Methods (가중치 보정을 이용한 다중대체법)

  • Kim, Jin-Young;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.4
    • /
    • pp.635-647
    • /
    • 2013
  • Imputation is a commonly used method to handle missing survey data. The performance of the imputation method is influenced by various factors, especially an outlier. The removal of the outlier in a data set is a simple and effective approach to reduce the effect of an outlier. In this paper in order to improve the precision of multiple imputation, we study a imputation method which reduces the effect of outlier using various weight adjustment methods that include the removal of an outlier method. The regression method in PROC/MI in SAS is used for multiple imputation and the obtained final adjusted weight is used as a weight variable to obtain the imputed values. Simulation studies compared the performance of various weight adjustment methods and Monthly Labor Statistic data is used for real data analysis.