• Title/Summary/Keyword: strut strength

Search Result 223, Processing Time 0.026 seconds

Effective Strengths of Concrete Struts in Strut-Tie Models of Reinforced Concrete Deep Beams (철근콘크리트 깊은 보 스트럿-타이 모델의 콘크리트 스트럿의 유효강도)

  • Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2195-2209
    • /
    • 2013
  • The effective strength of concrete struts must be determined accurately for the reliable strut-tie model analysis and design of structural concrete. In this study, the equations of the effective strength, which are useful for the three types of determinate and indeterminate strut-tie models of reinforced concrete deep beams employed in current design codes, are proposed. The effects of shear span-to-effective depth ratio, compressive strength of concrete, and flexural and shear reinforcement ratios are reflected in the development of the proposed equations. To examine the appropriateness of the proposed equations, the strengths of 241 reinforced concrete deep beams, all tested to shear failure, are evaluated by using the three types of strut-tie models with the existing and proposed equations.

Validity Evaluation of Effective Strength of Concrete Strut using Strut-Tie Model Analysis of Structural Concrete (콘크리트 구조부재의 스트럿-타이 모델 해석을 통한 스트럿 유효강도의 적합성 평가)

  • Jeun, Chang Hyun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.443-462
    • /
    • 2010
  • The strut-tie model approach has proven to be effective in the ultimate analysis and design of structural concrete with disturbed regions. For the reliable analysis and design by the approach, however, the effective strength of concrete struts must be determined accurately. In this study, the validity of the effective strength of concrete struts, presented by the several design codes and many researchers including the author, was examined through the ultimate strength analysis of 24 reinforced concrete panels, 275 reinforced concrete deep beams, and 218 reinforced concrete corbels by using the conventional linear strut-tie model approach of current codes. The present study shows that the author's approach, resulting in an accurate and consistent evaluation of the ultimate strength of the panels, deep beams, and corbels, may reflect rationally the effects of primary variables including the types of strut-tie model and structural concrete, the conditions of load and geometry, and the strength of concrete in the strut-tie model analysis and design of structural concrete.

Deformation-based Strut-and-Tie Model for reinforced concrete columns subject to lateral loading

  • Hong, Sung-Gul;Lee, Soo-Gon;Hong, Seongwon;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.157-172
    • /
    • 2016
  • This paper presents a Strut-and-Tie Model for reinforced concrete (RC) columns subject to lateral loading. The proposed model is based on the loading path for the post-yield state, and the geometries of struts and tie are determined by the stress field of post-yield state. The analysis procedure of the Strut-and-Tie Model is that 1) the shear force and displacement at the initial yield state are calculated and 2) the relationship between the additional shear force and the deformation is determined by modifying the geometry of the longitudinal strut until the ultimate limit state. To validate the developed model, the ultimate strength and associated deformation obtained by experimental results are compared with the values predicted by the model. Good agreements between the proposed model and the experimental data are observed.

Nonlinear Strut-Tie Model Approach in Pre-tensioned Concrete Deep Beams (높이가 큰 프리텐션 콘크리트 보에서의 비선형 스트럿-타이 모델 방법)

  • 윤영묵;이원석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.847-852
    • /
    • 2000
  • This paper presents an evaluation of the behavior and strength of two pre-tensioned concrete deep beams tested to failure with using the nonlinear strut-tie model approach. In the approach, the effective prestressing forces represented be equivalent external loads are gradually introduced along its transfer length in the nearest strut-tie model joints, the friction at the interface of main diagonal shear cracks is modeled by diagonal struts along the direction of the cracks in strut tie-model, and additional positioning of concrete ties a the place of steel ties is incorporated. Through the analysis of pre-tensioned concrete deep beams, the nonlinear strut-tie model approach proved to present effective solutions for prediction the essential aspects of the behavior and strength of pre-tensioned concrete deep beams.

  • PDF

Linear and Nonlinear Strut-Tie Model Approaches for Analysis and Design of Structural Concrete (콘크리트 부재의 해석/설계를 위한 선형 및 비선형 스트럿-타이 모델 방법)

  • 윤영묵;김병헌
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.375-379
    • /
    • 2003
  • In this paper, the linear and nonlinear strut-tie model approaches for the analysis and design of concrete structures are suggested. The validity of the approaches are examined through the strength analysis of four dapped-end beams tested to failure. According to the analysis results, the nonlinear strut-tie model approach which takes the various characteristics of nonlinear behaviors into account in the analysis and design of structural concrete and predicts the strength of structural concrete proven to be an effective method for structural analysis and design.

  • PDF

On the Transverse Strength of SWATH Ship - Reliability Analysis against Ultimate and Fatigue Strength - (SWATH선의 횡강도에 관한 연구 -최종강도와 피로강도에 대한 신뢰성 해석-)

  • J.S. Lee;J.J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.189-196
    • /
    • 1991
  • This paper is an illustration of the application of the reliability analysis to the transverse structure of a SWATH ship. The ultimate strength of plate members on the cross structure and upper part of strut are considered in the reliability analysis. The fatigue reliability analysis has been also carried out at the junction of cross structure, sponsors and strut. Included is also an example of the allowable fatigue damage level. Demonstrated is the reliability study of series system of which elements are the ultimate and fatigue failure as well. Doing this would be desirable to get a truer solution of the structural safety level. The paper ends with a brief summary of the present reliability study and same important points which may be useful at the design stage.

  • PDF

A Study on Shear Strength Prediction for Reinforced High-Strength Concrete Deep Beams Using Softened Strut-and-Tie Model (연화 스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구)

  • Kim, Seong-Soo;Lee, Woo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.159-169
    • /
    • 2003
  • In the ACI Code, the empirical equations governing deep beam design are based on low-strength concrete specimens with $f_{ck}$ in the range of 14 to 40MPa. As high-strength concrete(HSC) is becoming more and more popular, it is timely to evaluate the application of HSC deep beam. For the shear strength prediction of HSC deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the proposed model, the Appendix A Strut-and-Tie Model of ACI 318-02, and Eq. of ACI 318-99 11.8 are compared with the experimental test results of 4 deep beams and the collected experimental data of 74 HSC deep beams, compressive strength in the range of 49~78MPa. The proposed SSTM performance consistently reproduced 74 HSC deep beam measured shear strength with reasonable accuracy for a wide range of concrete strength, shear span-depth ratio, and ratio of horizontal and vertical reinforcement.

Behavior of the Wall System with Transfer Girder and Columns. (상부 전단벽 하부 프레임 구조를 갖는 시스템의 수직하중에 대한 거동)

  • 홍성걸;문종우;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.456-461
    • /
    • 1998
  • This paper presents the results from a combination of strut-and-tie model and analytical study that investigated the ultimate strength of wall system with frame supports. Strut-and-tie models show reasonable force flows and upper bound solution is compared to the results from FEM analysis. The results shows that two main parameters - transfer girder depth and column width - yield good estimation of the ultimate strength of the system. Vertical and horizontal reinforcements of the transfer girder add few strength to the whole system. The proposed design strength formula shows good agreement with the results from FEM analysis.

  • PDF

Strut-and-Tie Model for Shear Strength of R/C Columns (철근콘크리트 기둥의 전단강도 산정을 위한 스트럿 타이 모델)

  • 이수곤;하태훈;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.591-596
    • /
    • 1999
  • Current design methods as well as the majority of the previous researches for shear strength of the reinforced concrete are based on empirical method. There is a need to propose the rational models based on analytical approach. This paper presents the modified strut-and-tie model for reinforced concrete columns, under axial compression, shear, and flexural moment, considering tensile strength of concrete. Using this model, the strength and the failure mode of R/C columns are investigated, and the proposed models are compared with test data available in the literature.

  • PDF

Design and Buckling Analysis of Earth Retaining Struts Supported by High Strength Steel Pipe and PHC Pile (고강도 강관과 PHC파일이 활용된 흙막이 버팀보의 좌굴해석 및 설계)

  • Lim, Seung Hyun;Kim, In Gyu;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.411-422
    • /
    • 2015
  • The design and buckling behavior of earth retaining system supported by high strength steel pipe and PHC pile under compression is presented in this study. Buckling analysis of various strut system was investigated according to the strut total length(30m, 60m, 90m), three types of built-up columns and connection condition. Buckling loads calculated by F.E analysis was compared with the theoretical solution corresponding to diagonal buckling mode, local and global buckling mode of main strut. The design of the built-up column struts are performed based on design guide for high strength steel pipes and P-M diagram for built-up column with two PHC pile section.