• 제목/요약/키워드: strut strength

검색결과 223건 처리시간 0.026초

콘크리트 스트럿의 유효강도가 콘크리트 부재의 설계에 미치는 영향 (Effect of Effective Compressive Strength of Concrete Strut on Structural Concrete Design)

  • 윤영묵;석철호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.241-246
    • /
    • 2000
  • In the strut-tie model design of structural concrete, the importance of the effective strength of concrete strut has been overlooked by many practitioners. The authors believe that the effective strength of concrete strut is an important factor not only in determining steel tie forces but also in verifying the nodal zone strength and geometric compatibility condition of a selected strut-tie model. This study evaluate the effect of the effective strength of concrete strut on structural concrete design by applying the different effective strut strengths to the strut-tie model design of a post-tensioned anchorage zone and a continuous concrete deep beam.

  • PDF

고강도 강관버팀보 현장적용 및 경제성 평가 (Evaluation of Cost-Effectiveness on High-Strength Steel Pipe Strut and Its Application)

  • 나승민;이종구;이용주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.511-520
    • /
    • 2008
  • The steel pipe strut for a means of the retaining structure has been used generally in North America, Europe and China so far. However, Korea and Japan, two countries are much familiar with H-shape steel strut having its anisotropic strength on two different axes(named as strong and weak axes), even though they recognize the steel pipe's excellence of structural function associated with its compressive ability. This trend is mainly due to a number of its field application, accumulated know-hows and workmanship etc. This paper introduces particular features of a high-strength steel pipe strut in comparison with the H-shape steel strut and its application for two excavation sites in Seoul. As a result of field verification, the high-strength pipe steel strut is more effective than the H-shape steel strut in terms of construction costs, schedules, constructibility and structural stability.

  • PDF

Strut-tie model evaluation of behavior and strength of pre-tensioned concrete deep beams

  • Yun, Young Mook
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.267-291
    • /
    • 2005
  • To date, many studies have been conducted for the analysis and design of reinforced concrete members with disturbed regions. However, prestressed concrete deep beams have not been the subject of many investigations. This paper presents an evaluation of the behavior and strength of three pre-tensioned concrete deep beams failed by shear and bond slip of prestressing strands using a nonlinear strut-tie model approach. In this approach, effective prestressing forces represented by equivalent external loads are gradually introduced along strand's transfer length in the nearest strut-tie model joints, the friction at the interface of main diagonal shear cracks is modeled by the aggregate interlock struts along the direction of the cracks in strut-tie model, and an algorithm considering the effect of bond slip of prestressing strands in the strut-tie model analysis and design of pre-tensioned concrete members is implemented. Through the strut-tie model analysis of pre-tensioned concrete deep beams, the nonlinear strut-tie model approach proved to present effective solutions for predicting the essential aspects of the behavior and strength of pre-tensioned concrete deep beams. The nonlinear strut-tie model approach is capable of predicting the strength and failure modes of pre-tensioned concrete deep beams including the anchorage failure of prestressing strands and, accordingly, can be employed in the practical and precise design of pre-tensioned concrete deep beams.

Strut-tie model for two-span continuous RC deep beams

  • Chae, H.S.;Yun, Y.M.
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.357-380
    • /
    • 2015
  • In this study, a simple indeterminate strut-tie model which reflects complicated characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete were reflected upon. To verify the appropriateness of the present study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also estimated by the experimental shear equations, conventional design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the proposed strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables. The present study associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate strength of the continuous deep beams fairly well compared with those by other approaches. In addition, the present approach reflected the effects of the primary design variables on the ultimate strength of the continuous deep beams consistently and reasonably. The present study may provide an opportunity to help structural designers conduct the rational and practical strut-tie model design of continuous deep beams.

스트럿-타이 모델을 이용한 세장한 철근콘크리트 부재의 강도평가 (Evaluation of Shear Strength of RC Beams using Strut-and-Tie Model)

  • 박홍근;엄태성;박종철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.271-274
    • /
    • 2005
  • Existing strut-and-tie model cannot be applied to analysis of slender beams without shear reinforcement because shear transfer mechanism is not formed. In the present study, a new strut-and-tie model with rigid joint was developed. Basically, concrete strut is modeled as a frame element which can transfer shear force (or moment) as well as axial force. Employing Rankine failure criterion, failure strength due to shear-tension and shear-compression developed in compressive concrete strut was defined. For verification, various test specimens were analyzed and the results were compared with tests. The proposed strut-and-tie model predicted shear strength and failure displacement with reasonable precision, addressing the design parameters such as shear reinforcement, concrete compressive strength, and shear span ratio.

  • PDF

Numerical method for the strength of two-dimensional concrete struts

  • Yun, Y.M.
    • Computers and Concrete
    • /
    • 제28권6호
    • /
    • pp.621-634
    • /
    • 2021
  • For the reliable strut-and-tie model (STM) design of disturbed regions of concrete members, structural designers must accurately determine the strength of concrete struts to check the strength conditions of a selected STM el and the anchorage of reinforcing bars in nodal zones. In this study, the author proposed a consistent numerical method for strut strength, applicable to all two-dimensional STMs. The proposed method includes the effects of a biaxial stress state associated with tensile strains in reinforcing bars crossing a strut, deviation angle between strut orientation and compressive principal stress flow, and degree of confinement provided by reinforcement. The author examined the method's validity through the STM prediction of the ultimate strengths of 517 reinforced concrete (RC) deep beams, 24 RC panels, and 258 RC corbels, all tested to failure.

스트럿-타이 모델에 의한 개구부를 갖는 깊은 보의 극한강도 예측 (Prediction of Ultimate Strength of Concrete Deep Beams with an Opening Using Strut-and-Tie Model)

  • 지호석;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.189-194
    • /
    • 2001
  • In this study, ultimate strength of concrete deep beams with an opening is predicted by using Strut-and-Tie Model with a new effective compressive strength. First crack occurs around an opening by stress concentration due to geometric discontinuity. This results in decreasing ultimate strength of deep beams with an opening compared with general deep beams. With fundamental notion that ultimate strength of deep beam with an opening decreases as a result of reduction in effective compressive strength of a concrete strut, an equivalent effective compressive strength formula is proposed in order to reflect ultimate strength reduction due to an opening located in a concrete strut. An equivalent effective compressive strength formula which can reflect opening size and position is added to a testified algorithm of predicting ultimate strength of concrete deep beams. Therefore, ultimate strength of concrete deep beam with an opening is predicted by using a simple and rational STM algorithm including an equivalent effective compressive strength formula, not by finite element analysis or a former complex Strut-and-Tie Model

  • PDF

지반굴착용 조립식 버팀보의 구조 안정성에 관한 연구 (A Study on the Structural Stability of Prefabricated Strut for Ground Excavation Construction)

  • 이기선;김두환;송관권;김성필;김정훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권3호
    • /
    • pp.75-83
    • /
    • 2018
  • 본 연구에서는 일반 버팀보 공법을 개선한 조립식 버팀보 공법을 적용할 때 구조안정성에 대하여 검토하였다. 굴착단계별 가상의 최대 발생 토압력에 대해 좌굴되지 않도록 충분한 강성을 가지는에 대한 안정성검토를 실시하였다. 고강도 조립식 버팀보 공법은 상부플랜지에 일정한 간격으로 볼트 구멍이 천공되어 있는 공법이다. 구조물의 좌굴해석 결과 안전율은 약 5%정도 증가하였고, 발생응력이 허용응력보다 낮기 때문에 버팀보의 구조 안정성은 확보된 것으로 판단된다. 특히 고강도 버팀보 공법을 적용 시 축방향 압축응력은 약 16% 증가한다. 고강도 버팀보 공법은 공사기간을 단축할 수 있으며 추가 부재를 구매할 필요가 없어 경제적이다.

꺽쇠형 강재 댐퍼의 록킹 거동 (Rocking Behavior of Clamped Shape Metallic Damper)

  • 이현호
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.27-34
    • /
    • 2019
  • This study proposes a technique to dissipate the energy of a rocking wall installed on a frame by using a metallic damper. The rocking behavior is to turn left and right about the wall vertical axis. The development system is a method of dissipating energy by installing a damper which is the like on a large displacement portion. Experimental results showed that in case of shorter strut make strength capacity increasement and in case of longer strut make deformation capacity increasement. The higher the strut height, the better the energy dissipation capacity. The proposed equation for estimating the steel damper strength applied to this study is a straight type strut damper. However, it is not suitable for calculation of the strength of clamped type strut damper where both flexural behavior and shear behavior are mixed.

New strut-and-tie-models for shear strength prediction and design of RC deep beams

  • Chetchotisak, Panatchai;Teerawong, Jaruek;Yindeesuk, Sukit;Song, Junho
    • Computers and Concrete
    • /
    • 제14권1호
    • /
    • pp.19-40
    • /
    • 2014
  • Reinforced concrete deep beams are structural beams with low shear span-to-depth ratio, and hence in which the strain distribution is significantly nonlinear and the conventional beam theory is not applicable. A strut-and-tie model is considered one of the most rational and simplest methods available for shear strength prediction and design of deep beams. The strut-and-tie model approach describes the shear failure of a deep beam using diagonal strut and truss mechanism: The diagonal strut mechanism represents compression stress fields that develop in the concrete web between diagonal cracks of the concrete while the truss mechanism accounts for the contributions of the horizontal and vertical web reinforcements. Based on a database of 406 experimental observations, this paper proposes a new strut-and-tie-model for accurate prediction of shear strength of reinforced concrete deep beams, and further improves the model by correcting the bias and quantifying the scatter using a Bayesian parameter estimation method. Seven existing deterministic models from design codes and the literature are compared with the proposed method. Finally, a limit-state design formula and the corresponding reduction factor are developed for the proposed strut-andtie model.