• 제목/요약/키워드: strut and tie

검색결과 201건 처리시간 0.023초

스트럿-타이 모델을 이용한 PSC 박스거더교량의 정착부 설계 연구 (A Study on Design for Anchorage Zone in PSC Box Girder Bridge Using Strut-Tie Model)

  • 이주하;윤영수;이만섭;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.625-630
    • /
    • 2002
  • PSC box girder is widely used in a domestic bridge and overpass, etc., therefore, the design and construction technique for the PSC box girder is developing day by day. Even if it were so, however, the design for anchorage zone in PSC box girder has depended on common sense and empirical results. And it is the current situation that the designer has difficulty due to inadequacy of provisions in the domestic design code and lack of understanding for behavior of anchorage zone. Besides, the design based on Leonhardt's method is being done in general, but the design may be various even for the same structure because of the difference in a way of applying. In this paper, therefore, anchorage zone in PSC box girder bridge is analyzed and designed by using strut-tie model. Adequacy for the application of strut-tie model is verified by comparison with the way used in current design practice, and this study presents that strut-tie model can be a rational and an economical design than current design methods.

  • PDF

Limit state assessment of nodal zone capacity in strut-and-tie models

  • Tjhin, Tjen N.;Kuchma, Daniel A.
    • Computers and Concrete
    • /
    • 제4권4호
    • /
    • pp.259-272
    • /
    • 2007
  • A method based on the lower-bound theorem of limit analysis is presented for the capacity assessment of nodal zones in strut-and-tie models. The idealized geometry of the nodal zones is formed by the intersection of effective widths of the framing struts and ties. The stress distribution is estimated by dividing the nodal zones into constant stress triangles separated by lines of stress discontinuity. The strength adequacy is verified by comparing the biaxial stress field in each triangle with the corresponding failure criteria. The approach has been implemented in a computer-based strut-and-tie tool called CAST (Computer-Aided Strut-and-Tie). An application example is also presented to illustrate the approach.

격자 스트럿-타이 모델을 이용한 철근콘크리트 보의 강도평가 (Strength Evaluation of RC Beams Using Grid Strut-Tie Models)

  • 윤영묵;이원석;김병헌;정찬핵
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.540-543
    • /
    • 2004
  • In this study, the validity of the grid softened strut-tie model method suggested for concrete member analysis is examined through the ultimate strength evaluation of the reinforced concrete beams. The evaluated results of ultimate strength by the grid softened strut-tie model method were compared with those by the ACI 318-02 and the modified compression field theory, and European codes.

  • PDF

3차원 스트럿-타이 모델을 이용한 파일캡의 강도예측 (Strength Prediction of Concrete Pile Caps Using 3-D Strut-Tie Models)

  • 박정웅;윤영묵
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.380-383
    • /
    • 2003
  • Deep pile caps usually contain no transverse shear reinforcement and only small percentages of longitudinal reinforcement. The current design procedures including ACI 318-02 for the pile caps do not provide engineers with a clear understanding of the physical behavior of deep pile caps. In this study, the failure strengths of nine pile cap specimens tested to failure were evaluated using 3-dimensional strut-tie models. The analysis results obtained from the present study were compared with those obtained from several design methods, and the validity of the present method implementing 3-dimensional strut-tie models was examined.

  • PDF

스트럿-타일 모델을 이용한 반복하중을 받는 철근 콘크리트 보의 전단피로손상거동에 관한 연구 (A Study on the Shear Fatigue Damage Behavior of the Reinforced Concrete Beams Subject to Repeated Loading Using the Strut-Tie Model)

  • 오병환;한승환;유영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.430-435
    • /
    • 1997
  • This paper represents the investigation of the shear fatigue behavior and damage procedure of reinforced concrete beams subject to repeated loading using the strut-tie model. Damage Index is defined as the ratio of deflection at each cycle to the ultimate deflection of inelastic region. Two types of strut-tie model are designed according to the inclined angles of concrete-struts and the consideration of concrete-ties. In one model, aggregate interlock and resistance of uncracked concrete are regarded as the main sheat resisting mechanism and in the other, stirrup is. The results show that the strut-tie model combined with damage index can describe the shear fatigue behavior of RC beams subject to repeated loading effectively.

  • PDF

스트럿 타이 모델개발을 위한 시각화 도구 개발 (Development of Visual Tools for Strut-Tie Model)

  • 김남희;홍성걸;여득현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.596-601
    • /
    • 2008
  • This paper presents how to develop visual design tools for construction of strut-and-tie models(S (STM). STMs have shown internal force flows for dimensioning and proportioning of D-regions of reinforced concrete structures. In order to select an appropriate strut-and-tie model some interactive graphic tools are necessary to help designers compare alternatives by changing the geometry of initial STM. This study proposes to use force polygons representing the equilibrium state of STM. The change of STM dynamically shows change of force magnitudes by force polygon. Once the geometry of STM is determined the detailing design process is required in the next procedure.

  • PDF

주상복합구조의 전이보 상세에 따른 성능과 파괴모드 (Capacities and Failure Modes of Transfer Girders in the Upper-Wall and Lower-Frame Structures having different Detailing)

  • 이한선;김상연;고동우;권기혁;김민수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.845-850
    • /
    • 2000
  • This paper presents the results of tests performed on the transfer girders which have been generally used between upper walls and lower frames in the hybrid structures. The 8 specimens were designed using (1) ACI method, (2) strut-tie model, and (3) X-type shear reinforcement cage. The capacities of the specimens are in general larger than the design values except the one designed according to strut-tie model. The reason for this difference seems to be due to the arbitrary allocation of transferred shear force to the path of direct compression strut and the path of indirect strut and tie. The failure modes turn out toe be (1) shear failure at critical shear zone, (2) compressive concrete crushing in the diagonal strut in the shear zone of transfer girder, and (3) compressive concrete crushing in the corner of upper wall.

Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches

  • Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.657-680
    • /
    • 2016
  • Reinforced concrete (RC) deep beams are structural members that predominantly fail in shear. Therefore, determining the shear strength of these types of beams is very important. The strut-and-tie method is commonly used to design deep beams, and this method has been adopted in many building codes (ACI318-14, Eurocode 2-2004, CSA A23.3-2004). In this study, the efficiency of artificial neural networks (ANNs) in predicting the shear strength of RC deep beams is investigated as a different approach to the strut-and-tie method. An ANN model was developed using experimental data for 214 normal and high-strength concrete deep beams from an existing literature database. Seven different input parameters affecting the shear strength of the RC deep beams were selected to create the ANN structure. Each parameter was arranged as an input vector and a corresponding output vector that includes the shear strength of the RC deep beam. The ANN model was trained and tested using a multi-layered back-propagation method. The most convenient ANN algorithm was determined as trainGDX. Additionally, the results in the existing literature and the accuracy of the strut-and-tie model in ACI318-14 in predicting the shear strength of the RC deep beams were investigated using the same test data. The study shows that the ANN model provides acceptable predictions of the ultimate shear strength of RC deep beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model is shown to provide more accurate predictions of the shear capacity than all the other computed methods in this study. The ACI318-14-STM method was very conservative, as expected. Moreover, the study shows that the proposed ANN model predicts the shear strengths of RC deep beams better than does the strut-and-tie model approaches.

스트럿-타이 모델에 의한 개구부를 갖는 깊은 보의 극한강도 예측 (Prediction of Ultimate Strength of Concrete Deep Beams with an Opening Using Strut-and-Tie Model)

  • 지호석;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.189-194
    • /
    • 2001
  • In this study, ultimate strength of concrete deep beams with an opening is predicted by using Strut-and-Tie Model with a new effective compressive strength. First crack occurs around an opening by stress concentration due to geometric discontinuity. This results in decreasing ultimate strength of deep beams with an opening compared with general deep beams. With fundamental notion that ultimate strength of deep beam with an opening decreases as a result of reduction in effective compressive strength of a concrete strut, an equivalent effective compressive strength formula is proposed in order to reflect ultimate strength reduction due to an opening located in a concrete strut. An equivalent effective compressive strength formula which can reflect opening size and position is added to a testified algorithm of predicting ultimate strength of concrete deep beams. Therefore, ultimate strength of concrete deep beam with an opening is predicted by using a simple and rational STM algorithm including an equivalent effective compressive strength formula, not by finite element analysis or a former complex Strut-and-Tie Model

  • PDF