• Title/Summary/Keyword: structure zone model

Search Result 278, Processing Time 0.025 seconds

Application of Geophysical Survey to the Geological Engineering Model for the Effective Detection in Foundation of Stone Relics (석조문화재 기초지반 파악을 위한 모형지반에서의 탐사기법 적용)

  • Kim, Man-Il;Lee, Chang-Joo;Kim, Jong-Tae;Kim, Ji-Soo;Kim, Sa-Dug;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.537-543
    • /
    • 2008
  • To effectively delineate the foundation of stone relics by GPR and seismic refraction methods, a geological engineering model was constructed with alternating layer of soil and gravel to a depth of 3 m. This study was aimed at mapping the boundaries of model ground structure and interfaces of alternating layer using the various frequency antenna in GPR survey and seismic velocities. Compared to the resolution from the high frequency antenna, the image resolution from the survey using 100 Hz antenna is the lower, but with the deeper image coverage. On the contrast, the deeper structure was not mapped in the higher frequency data due to higher absorption effect, but the shallow layered zone was distinctively resolved. Therefore subsurface images were effectively provided by integrating the data with 100 MHz and 450 MHz antennas for the deep and shallow structures, respectively. Regarding the seismic refraction data, the boundaries of the model and interface of the alternating layers were not successfully mapped due to the limit of the survey length. However, the equivalent contours of low velocity extended deep as considerable velocity contrasts with surrounding ground.

Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B (수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B)

  • Yoon, Jeoung Seok;Zhou, Jian
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.320-334
    • /
    • 2020
  • This study presents an application of hydro-mechanical coupled Particle Flow Code 3D (PFC3D) to simulation of fluid injection induced fault slip experiment conducted in Mont Terri Switzerland as a part of a task in an international research project DECOVALEX-2019. We also aimed as identifying the current limitations of the modelling method and issues for further development. A fluid flow algorithm was developed and implemented in a 3D pore-pipe network model in a 3D bonded particle assembly using PFC3D v5, and was applied to Mont Terri Step 2 minor fault activation experiment. The simulated results showed that the injected fluid migrates through the permeable fault zone and induces fault deformation, demonstrating a full hydro-mechanical coupled behavior. The simulated results were, however, partially matching with the field measurement. The simulated pressure build-up at the monitoring location showed linear and progressive increase, whereas the field measurement showed an abrupt increase associated with the fault slip We conclude that such difference between the modelling and the field test is due to the structure of the fault in the model which was represented as a combination of damage zone and core fractures. The modelled fault is likely larger in size than the real fault in Mont Terri site. Therefore, the modelled fault allows several path ways of fluid flow from the injection location to the pressure monitoring location, leading to smooth pressure build-up at the monitoring location while the injection pressure increases, and an early start of pressure decay even before the injection pressure reaches the maximum. We also conclude that the clay filling in the real fault could have acted as a fluid barrier which may have resulted in formation of fluid over-pressurization locally in the fault. Unlike the pressure result, the simulated fault deformations were matching with the field measurements. A better way of modelling a heterogeneous clay-filled fault structure with a narrow zone should be studied further to improve the applicability of the modelling method to fluid injection induced fault activation.

A phase transformation model for burning surface in AP/HTPB propellant combustion (AP추진제의 연소면 형성 및 전파 모델링 연구)

  • Jung, Tae-Yong;Doh, Young-Dae;Yoo, Ji-Chang;Yoh, Jack Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • In the solid rocket propellant combustion, the dynamic phase change from solid to liquid to vapor occurs across the melt layer. During the surface burning, liquid and gas phases are mixed in the intermediate zone between the propellant and the flame to form micro scale bubbles. The known thickness of the melt layer is approximately 1 micron at $10^5$ Pa. In this paper, we present a model of the melt layer structure and the dynamic motion of the melt front derived from the classical phase field theory. The model results show that the melt layer grows and propagates uniformly according to exp(-1/$T_s$) with $T_s$ being the propellant surface temperature.

Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서 선회 예혼합화염의 대와동모사(LES))

  • 황철홍;이창언
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.79-88
    • /
    • 2006
  • In the present paper, the swirl flow structure and flame characteristics of turbulent premixed combustion in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. When inlet swirl number is increased, the distinct flow structures, such as the shapes of corner recirculation and center toroidal recirculation zone, are observed and the flame length is shorted gradually. Also, the phenomena of flashback are identified at strong swirl intensity. In order to get the accurate description of unsteady flame behavior, the predictive ability of the acoustic wave in a combustor is primarily evaluated. It is found that the vortex generated near the edge of step plays an important role in the flame fluctuation. Finally it is examined systematically that the flame and heat release fluctuation are coupled strongly to the vortex shedding generated by swirl flow and acoustic wave propagation from the analysis of flame-vortex interaction.

Evaluation of the new coastal protection scheme at Mamaia Bay in the nearshore of the Black Sea

  • Niculescu, Dragos M.;Rusu, Eugen V.C.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • The target area of the proposed study, Mamaia beach, is a narrow stretch of sand barrier island that sits between the Siutghiol Lake and the Black Sea. In the northern part of the bay, is located the Midia Port, where between 1966 and 1971 a long extension of 5 km of the offshore was built. Because of this extension, the natural flow of sediments has been significantly changed. Thus, the southern part of the Mamaia Bay had less sand nourishment which meant that the coast was eroding and to prevent it a protection of six dikes was built. After approximately forty years of coastal erosion, the south of the Mamaia Bay had in 2016 a new protection scheme, which includes first of all the beach nourishment and a new dike structure (groins scheme for protection) to protect it. From this perspective, the objective of the proposed study is to evaluate the effectiveness of the old Master plan against the new one by modeling the outcome of the two scenarios and to perform a comparison with a third one, in which the protection dikes do not exist and only the artificial nourishment has been done. In order to assess the wave processes and the current patterns along the shoreline, a complex computational framework has been applied in the target area. This joins the SWAN spectral phase averaged model with the 1D surf model. Furthermore, new UAV technology was also used to map out, chart and validate the numerical model outputs within the target zone for a better evaluation of the trends expected in the shoreline dynamics.

Numerical Investigation of the Progressive Failure Behavior of the Composite Dovetail Specimens under a Tensile Load (인장하중을 받는 복합재료 도브테일 요소의 점진적인 파손해석)

  • Park, Shin-Mu;Noh, Hong-Kyun;Lim, Jae Hyuk;Choi, Yun-Hyuk
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.337-344
    • /
    • 2021
  • In this study, the progressive failure behavior of the composite fan blade dovetail element under tensile loading is numerically investigated through finite element(FE) simulation. The accuracy of prediction by FE simulation is verified through tensile testing. The dovetail element is one of the joints for coupling the fan blade with the disk in a turbofan engine. The dovetail element is usually made of a metal material such as titanium, but the application of composite material is being studied for weight reduction reasons. However, manufacturing defects such as drop-off ply and resin pocket inevitably occur in realizing complex shapes of the fan blade made by composite materials. To investigate the effect of these manufacturing defects on the composite fan blade dovetail element, we performed numerical simulation with FE model to compare the prediction of the FE model and the tensile test results. At this time, the cohesive zone model is used to simulate the delamination behavior. Finally, we found that FE simulation results agree with test results when considering thermal residual stress and through-thickness compression enhancement effect.

A Study on the Supportive Stiffness in Transitional Zones through Moving Load-Based Three-Dimensional Modeling (이동하중과 3차원 모델링을 통한 접속부 지지강성연구)

  • Woo, Hyeun-Joon;Lee, Seung-Ju;Kang, Yun-Suk;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1542-1549
    • /
    • 2011
  • The Transitional zone between bridge abutment and earthwork is one of the representative vulnerable zones in railway where differential settlements may take place due to the different supportive stiffness. Although transitional zones are managed with stricter standards than those of the other earthwork zones either in the design and construction stages, it is very difficult to prevent differential settlement perfectly. A three-dimensional numerical analyses were performed by applying train moving load in this study. The analytical model including abutments and earthwork zones was constituted with rail, sleepers, track concrete layer (TCL), hydraulic stabilized base (HSB), reinforced road bed, and road bed using railway and road base structure. The clamp connecting the rail and sleeper were also modeled as the element with spring coefficient. The train wheel is modeled in the actual size and moved on the rail with 300 km/hr speed. The deformation characteristics at each point of the rail and the ground were considered in detail when moving the train wheel. The analysis results were compared with those from the two-dimensional analysis without considering moving load. The research results show that displacement and stress were greater in the three-dimensional analysis than in other analyses, and the three-dimensional analysis with moving load should be performed to evaluate railway performance.

  • PDF

Expansion of Dusty H II Regions and Its Impact on Disruption of Molecular Clouds

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.58.3-59
    • /
    • 2015
  • Dynamical expansion of H II regions plays a key role in dispersing surrounding gas and therefore in limiting the efficiency of star formation in molecular clouds. We use analytic methods and numerical simulations to explore expansions of spherical dusty H II regions, taking into account the effects of direct radiation pressure, gas pressure, and total gravity of the gas and stars. Simulations show that the structure of the ionized zone closely follows Draine (2011)'s static equilibrium model in which radiation pressure acting on gas and dust grains balances the gas pressure gradient. Strong radiation pressure creates a central cavity and a compressed shell at the ionized boundary. We analytically solve for the temporal evolution of a thin shell, finding a good agreement with the numerical experiments. We estimate the minimum star formation efficiency required for a cloud of given mass and size to be destroyed by an HII region expansion. We find that typical giant molecular clouds in the Milky Way can be destroyed by the gas-pressure driven expansion of an H II region, requiring an efficiency of less than a few percent. On the other hand, more dense cluster-forming clouds in starburst environments can be destroyed by the radiation pressure driven expansion, with an efficiency of more than ~30 percent that increases with the mean surface density, independent of the total (gas+stars) mass. The time scale of the expansion is always smaller than the dynamical time scale of the cloud, suggesting that H II regions are likely to be a dominant feedback process in protoclusters before supernova explosions occurs.

  • PDF

Effects of the Air Spoiler on the Wake Behind a Road Vehicle by PIV Measurements (자동차 후류에서 에어스포일러의 영향에 대한 PIV 측정)

  • Kim, Jin-Seok;Sung, Jae-Yong;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Sung-Cho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.136-143
    • /
    • 2006
  • A particle image velocimetry (PlV) technique has been applied to measure the quantitative flow field characteristics behind a road vehicle with/without an air spoiler attached on its trunk and to estimate its effect on the wake. A vehicle model scaled in the ratio of 1/43 is set up in the mid-section of a closed-loop water tunnel. The Reynolds number based on the vehicle length is $10^5$. To investigate the three-dimensional structure of the recirculation zone and vortices, measurements are carried out on the planes both parallel and perpendicular to the free stream, respectively. The results show significant differences in the recirculation region and the vorticity distributions according to the existence of the air spoiler. The focus and the saddle point, appearing just behind the air spoiler, are disposed differently along the spanwise direction. Regarding the streamwise vortices, the air spoiler produces large wing tip vortices. They have opposite rotational directions to C-pillar vortices which are commonly observed in case that the air spoiler is absent. The wing tip vortices generate the down-force and as a result, they can make the vehicle more stable in driving.

A Study on the Effect of the Improvement of Investment Environment with Investment Incentive on National Economy

  • Moon, Jae-Young;Lee, Won-Hee;Choi, Pyeong-Rak;Suh, Yung-Ho
    • International Journal of Quality Innovation
    • /
    • v.9 no.2
    • /
    • pp.129-147
    • /
    • 2008
  • This research is to investigate the effect of the improvement of investment environments with investment incentive on Korean national economy by looking into the foreign investment support system in Korea. To this end, first research model was set up based on our literary study and case study was conducted on 150 foreign companies that were located in industrial complex for foreign companies, received the tax benefit and government subsidization. And it was found that even though the foreign companies were contributing to the national economy in general such as in the area of production, export, employment, development of technology, there was no significant contributory difference between the investment incentive beneficiary and non-beneficiary foreign companies. Therefore it deemed reasonable to reconsider the way Korean government supports foreign companies in Korea and to reinforce foreign companies' relevance to national policy agenda with additional incentives to foreign companies located in comparatively less developed areas. As a way to promote foreign investment, promotion of investment infra such as improvement of follow-up services, openness to foreign investment, industrial deregulations in capital area, revitalization of free economic zone, efficient system to promote foreign investment and the reinforcement of public relations were considered necessary, especially the upgrading of economic structure and the integrated management of domestic and foreign investors deemed necessary for the optimal distribution of the industries.