• Title/Summary/Keyword: structure safety

Search Result 4,495, Processing Time 0.028 seconds

On the Leakage Safety Analysis of Membrane LNG Storage Tank With Thermal Resistance Effects (열저항 효과를 고려한 멤브레인식 LNG 저장탱크의 누설 안전성에 관한 연구)

  • Kim C.K.;Cho S.H.;Suh H.S.;Hong S.H.;Lee S.R.;Kim Y.G.;Kwon B.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.1-7
    • /
    • 2004
  • In this paper, the FE analysis has been presented for the leakage safety of the membrane LNG storage tank based on the thermal resistance effects between the insulation panel and prestressed concrete structure. The FEM calculated results show that the leakage safety of plywood and polyurethane materials does not guarantee any more due to a strength failure of the insulation structure. But the PC structure of outer tank may delay leaked LNG of 10 days even though the inner tank and insulation structure are simultaneously failed. This means that the membrane LNG storage tank may be safe because of the stiffness of the outer tank.

  • PDF

A Study on Simplified Analysis and Estimation Method for Evaluation of Structural Safety in Modular Underground Arch Structure (모듈러 지중아치 구조 안전성 검토를 위한 간략 해석 및 평가방법에 관한 연구)

  • Kwon, Tae-Yun;Cho, Kwang-Il;Lee, Wong-Hong;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.55-63
    • /
    • 2022
  • A modular underground arch structure using steel and concrete has been proposed as a structure that has a simple construction process and can effectively resist cross-sectional forces generated during construction and use. Structural behavior of modular underground arch was evaluated about span length less than 15m through 3D structural analysis and test. In general, 2D and 3D structural analysis methods may be applied for structural analysis such as underground arch and tunnels. However, if a 2D or 3D structural analysis method is applied to evaluate the structural safety of a modular underground arch structure, it is difficult to model for structural analysis and it may take an excessively long time to interpret. Therefore, it may not be reasonable as a structural analysis method for considering the structural safety and earth pressure in the design process of a modular underground arch structure. In addition, when a modular underground arch structure is configured for span lengths to which the predetermined cross-section is applicable, it may be reasonable to evaluate only the safety of the structure and cross-section according to the cross-section and load conditions. Therefore, in this study, a structural analysis model using frame elements was proposed for efficient structural safety evaluation. In addition, structural analysis results of the 2D structural analysis model and the simplified analysis model using frame elements were compared, and the structural safety of the modular underground arch structure for a span length of 20m was evaluated with a simplified analysis method.

Evaluation of Ultimate Pressure Capacity of Wolsong Containment Structure (월성 원자력발전소 격납건물의 극한내압평가)

  • Kwak Hyo-Gyoung;Kim Jae Hong;Kim Sun-Hoon;Chung Yun-Suk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.183-189
    • /
    • 2005
  • Nuclear containment structure is the last barrier for being secure from any nuclear power plant accident. Even though the safety requirements of nuclear power plant have been focused on removing accidental situations, nuclear containment structure must reserve the sufficient resisting capacity to any accident because it works as the last barrier. The acceptable nuclear containment structure makes possible to limit the effect of internal accidents and to avoid radioactive release. In this study, to conduct the numerical analysis for the structural safety of a containment structure, loss of coolant accident (LOCA) is considered as the basic accidental load, and Wolsong containment structure is considered as a target structure. The CANDU containment structure, such as Wolsong containment structure, is a prestressed concrete shell structure which has dome and is reinforced with bonded tendons. The evaluation of ultimate pressure capacity was conducted by nonlinear analysis of a prestressed concrete containment structure.

  • PDF

A Study on Characteristics of Fire Temperature and Concentration of Toxic Gases while the Door Opening or Closed on Multi-layered Construction (복층건물의 출입문 개방여부에 따른 화재온도분포 및 독성가스 농도 변화특성에 관한 연구)

  • Lee, Jungyun;Kim, Jeonghun;Kim, Eungsik;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.72-77
    • /
    • 2017
  • In S. Korea, recently, building fire accidents of residential accommodations or recreational facilities have taken place more frequently than before. Among various building constructions, Multi-layered structure, such as office-residential complex, are mostly made in S. korea. $O_2$, $CO_2$, CO, $NO_x$, $SO_x$, and HCl, these gases has toxic hazard and harmful for human body. And it is predicted that different concentration of released gases from diesel pool fire with upper and lower layer. Therefore, this study reports the fire characteristics of Multi-layered structure by analyzing the fire behavior and concentration of combustion gases of a experimental compartment via real scale fire experiment, in order to predict risks and secure safety for similar fire accidents.

Seismic Fragility Evaluation of Isolated NPP Containment Structure Considering Soil-Structure Interaction Effect (지반-구조물 상호작용 효과를 고려한 지진격리시스템이 적용된 원전 격납건물의 지진 취약도 평가)

  • Eem, Seung Hyun;Jung, Hyung Jo;Kim, Min Kyu;Choi, In Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.53-59
    • /
    • 2013
  • Several researches have been studied to enhance the seismic performance of nuclear power plants (NPPs) by application of seismic isolation. If a seismic base isolation system is applied to NPPs, seismic performance of nuclear power plants should be reevaluated considering the soil-structure interaction effect. The seismic fragility analysis method has been used as a quantitative seismic safety evaluation method for the NPP structures and equipment. In this study, the seismic performance of an isolated NPP is evaluated by seismic fragility curves considering the soil-structure interaction effect. The designed seismic isolation is introduced to a containment building of Shin-Kori NPP which is KSNP (Korean Standard Nuclear Power Plant), to improve its seismic performance. The seismic analysis is performed considering the soil-structure interaction effect by using the linearized model of seismic isolation with SASSI (System for Analysis of Soil-Structure Interaction) program. Finally, the seismic fragility is evaluated based on soil-isolation-structure interaction analysis results.

The Analysis of Damage Characteristic and Cause on Infrastructures by Typhoon (시설물별 태풍에 따른 피해특성 및 원인분석)

  • Shin, Chang-Gun;Lee, Jong-Young;Kim, Seok-Jo;Ji, Young-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1602-1610
    • /
    • 2005
  • In this study was investigated and analyzed of damage characteristics for infrastructures by typhoon that have been many occur. The objective Structures were the road and hydraulic structure. The road structure was included the cut-slopes, retaining walls and bridges. The hydraulic structure is divided with the dike, small-scale dam, reservoir and floodgate. The analysis result of the bridge damage cause is river bottom height increase and passage ability decrease. The principal damage reasons of the cut-slope structure are weakening the ground due to the localized torrential downpour and drainage defective. Also, the principal damage reasons of the small-scale dam, reservoir, dike and the floodgate are continuous collapse of dike beside the floodgate.And we divided a typhoon damage occurrence cause with artificial and natural. As the result of analysis, the many damage occurrence cause will be removed by system improvement and technical development.

  • PDF

Inflow Characteristics of Debris Flow and Risk Assessment for Different Shapes of Defensive Structure (방어구조물 형상에 따른 토석류의 유입특성과 위험도 평가)

  • Oh, Seung Myeong;Song, Chang Geun;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.93-98
    • /
    • 2016
  • This study analyzed the inflow characteristics of debris flow according to shape of defensive structure and computed risk index. In order to simulate debris flow, two shapes of defensive structure were considered. Initial mass distribution was set with a rectangular shape and defensive structures were set semi-circular shape and rectangular shape, respectively. It was found that a defensive structure with semicircular shape was more vulnerable to debris impact compared with rectangular shape because the flow mass became concentrated in quadrant part of the inner circle. If the velocity of the debris flow was less than 1 m/s, the risk assessment by FII (Flood Intensity Index) was much appropriate. However, when the movement of debris runout was faster than 1 m/s, the risk index of FHR (Flood Hazard Rating) provided improved classification due to its subdivided hazardous range.

DESIGN OPTIMIZATION OF AN INDUSTRIAL 3/2 WAY PNEUMATIC VALVE CONSIDERING FLOW-STRUCTURE CHARACTERISTICS (3/2 WAY 공압밸브의 유동-구조적 특성을 고려한 최적설계)

  • Yang, S.M.;Baek, S.H.;Kim, T.W.;Jung, I.S.;Kang, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.605-607
    • /
    • 2011
  • A Study on the flow-structure characteristics of a 3/2 way pneumatic valve is essential for optimizing the performance of ship engines. It is important for the valve to have desirable safety factor am reduced weight from the safety and economic point of view. In this study, we capture flow-structure characteristics of 3/2 way pneumatic valve. This is optimized based on the proper design criteria. The air at a pressure of 30 bar is the working fluid which is made to fill in the tack in short time. This time is defined as the filling time. The flow and structure analysis is performed for three cases under maximum stress and safety factor. In optimum design, considering the flow-structure characteristics, we model twenty seven cases by using DOE(design of experiments) method Here, analysis for each cases is performed and then metamodels are created We obtain optimized parameters and then analysis is repeated to compare with the initial model. Finally, the feasibility of the optimum design is verified.

  • PDF

Seismic performance evaluation of a three-dimensional unsymmetrical reinforced concrete building

  • Lim, Hyun-Kyu;Kang, Jun Won;Lee, Young-Geun;Chi, Ho-Seok
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.2
    • /
    • pp.143-156
    • /
    • 2016
  • Reinforced concrete (RC) structures require advanced analysis techniques for better estimation of their seismic responses, especially in the case of exhibiting complex three-dimensional coupling of torsional and flexural behaviors. This study focuses on validating a numerical approach for evaluating the seismic response of a three-dimensional unsymmetrical RC structure through the participation in the SMART 2013 international benchmark program. The benchmark program provides material properties, detailed drawings of the RC structure, and input ground motions for the seismic response evaluation. In this study, nonlinear constitutive models of concrete and rebar were formed and local tests were conducted to verify the constitutive models in finite element analysis. Elastic calibration of the finite element model of the SMART 2013 RC structure was performed by comparing numerical and experimental results in modal and linear time history analyses. Using the calibrated model, nonlinear earthquake analysis and seismic fragility analysis were performed to estimate the behavior and vulnerability of the RC structure with various ground motions.

In vivo Imaging Biodistribution Profile of a New Macrocyclic Gadolinium Chelate as a Highly Stable Multifunctional MRI Contrast Agent

  • Sung, Bo Kyung;Jo, Yeong Woo;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.34-37
    • /
    • 2019
  • Gadolinium contrast agents (CAs) are integral components of clinical magnetic resonance imaging (MRI). However, safety concerns have arisen regarding the use of gadolinium CAs, due to their association with nephrogenic systemic fibrosis (NSF). Furthermore, recently the long-term retention of $Gd^{3+}-based$ CAs in brains patients with normal renal function raised another possible safety issue. The safety concerns of $Gd^{3+}-based$ CAs have been based on the ligand structure of $Gd^{3+}-based$ CAs, and findings that $Gd^{3+}-based$ CAs with linear ligand structures showed much higher incidences of NSF and brain retention of CAs than $Gd^{3+}-based$ CAs with macrocyclic ligand structure. In the current study, we report the in vivo biodistribution profile of a new highly stable multifunctional $Gd^{3+}-based$ CA, with macrocyclic ligand structure (HNP-2006). MR imaging using HNP-2006 demonstrated a significant contrast enhancement in many different organs. Furthermore, the contrast enhanced tumor imaging using HNP-2006 confirmed that this new macrocyclic CA can be used for detecting tumor in the central nervous system. Therefore, this new multifunctional HNP-2006 with macrocyclic ligand structure shows great promise for whole-body clinical application.