• Title/Summary/Keyword: structure packing

Search Result 220, Processing Time 0.021 seconds

Loose and Dense Aggregate Particle Packing Models in Cement and Concrete

  • Kim, Jong-Cheol;Lim, Chang-Sung;Auh, Keun-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Particle packing properties are important to develop high technology products in the field of cement and concrete. Two types of particle packing models for aggregates with sand and cement were introduced: the loose and the dense aggregate packing. Aggregate packing models with randomly generated sand and cement particles in the interstices of aggregates fit the Furnas model very well. Different aggregate models show different packing properties with the experimental results. Main reason for the difference with the experimental results is due to sand rearrangement in the loose aggregate packing model and to aggregate relaxation in the dense aggregate packing model. In the experimental situation, aggregates seem to be more disordered and have a relaxed packing structure in the dense packing, and sands seem to have a more rearranged packing structure in the loose packing model.

  • PDF

Influence of Orgnainc Pigment Addition on Surface Properties of Coating Layer (유기안료의 첨가가 도공층의 표면특성에 미치는 영향)

  • 정경모;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.47-53
    • /
    • 2004
  • In this experiment the effects of the packing structure of pigment on the surface characteristics (smoothness and gloss) of coated paper are studied. Four different kinds of inorganic pigments(clay), ground calcium carbonate(GCC), two of precipitated calcium carbonates(PCC), and two organic pigments(solid bead and hollow type) were used. The method of measuring the relative sediment volume(RSV) was used to analyze the packing structure of coating layer. The relative sediment volume was measured, using the pressure dewatering dry-cake method(PDDM) and centrifuge method. Also, the particle size distribution of coating pigment was determined. The results showed that small amount of organic pigment, added to inorganic pigment, improved smoothness and its effect was greater when GCC was used as inorganic pigment. The efficiency of organic pigment depended upon the inorganic pigment since the organic pigment is packed in the pores formed by the inorganic pigment.

Comparative Study of Implicit and Explicit Solvation Models for Probing Tryptophan Side Chain Packing in Proteins

  • Yang, Chang-Won;Pak, Young-Shang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.828-832
    • /
    • 2012
  • We performed replica exchange molecular dynamics (REMD) simulations of the tripzip2 peptide (betahairpin) using the GB implicit and TI3P explicit solvation models. By comparing the resulting free energy surfaces of these two solvation model, we found that the GB solvation model produced a distorted free energy map, but the explicit solvation model yielded a reasonable free energy landscape with a precise location of the native structure in its global free energy minimum state. Our result showed that in particular, the GB solvation model failed to describe the tryptophan packing of trpzip2, leading to a distorted free energy landscape. When the GB solvation model is replaced with the explicit solvation model, the distortion of free energy shape disappears with the native-like structure in the lowest free energy minimum state and the experimentally observed tryptophan packing is precisely recovered. This finding indicates that the main source of this problem is due to artifact of the GB solvation model. Therefore, further efforts to refine this model are needed for better predictions of various aromatic side chain packing forms in proteins.

Influence of particle packing on fracture properties of concrete

  • He, Huan;Stroeven, Piet;Stroeven, Martijn;Sluys, Lambertus Johannes
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.677-692
    • /
    • 2011
  • Particle packing on meso-level has a significant influence on workability of fresh concrete and also on the mechanical and durability properties of the matured material. It was demonstrated earlier that shape exerts but a marginal influence on the elastic properties of concrete provided being packed to the same density, which is not necessarily the case with different types of aggregate. Hence, elastic properties of concrete can be treated as approximately structure-insensitive parameters. However, fracture behaviour can be expected structure-sensitive. This is supported by the present study based on discrete element method (DEM) simulated three-phase concrete, namely aggregate, matrix and interfacial transition zones (ITZs). Fracture properties are assessed with the aid of a finite element method (FEM) based on the damage materials model. Effects on tensile strength due to grain shape and packing density are investigated. Shape differences are shown to have only modest influence. Significant effects are exerted by packing density and physical-mechanical properties of the phases, whereby the ITZ takes up a major position.

패킹 그랜드를 위한 전산원용 설계 및 가공

  • 조성철;오상진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.335-338
    • /
    • 1992
  • To purpose of this study is to design and manufacturing of packing gland using CAD/CAM system. The computer system used in this study was constructed with CPU 80386, RAM memory 4M, VGA graphic card. We was composed with CAD/CAM system, with interface PC and NC milling machine. By using develop program, we designed packing gland and it's manufactured. The basic structure of automatic production system for packing gland was established.

Effect of Suspension Property on Granule Characteristics and Compaction Behavior of Fine Si3Na4 Powder (분산계 특성이 질화규소 미분의 과립특성 및 충진거동에 미치는 영향)

  • 이해원;오성록
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.462-470
    • /
    • 1995
  • The characteristics of spray-dried granules are important for dry pressing operation since they have great influences on die-filling, compaction ratio, and resulting green microstructure. An attempt was made to control granule morphology and the packing structure of fine Si3N4 particles in granules by adjusting suspension property. Mercury porosimetry was used to characterize the pore structures of both granules and green compacts. Finally, the effects of particle packing structure in granules and green microstructure on sintering behavior were investigated.

  • PDF

A study of the Method on the Packing ability of Concrete Filled in Steel Tube Structure by High Strength and High Flowable Concrete (고강도 고유동 콘크리트를 이용한 콘크리트충전강관(CFT)구조의 충전성에 관한 공법 연구)

  • Kang, Yong-Hak;Jung, Keun-Ho;Lim, Nam-Ki;Lee, Young-Do;Jung, Jae-Young;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.1
    • /
    • pp.163-169
    • /
    • 2002
  • In this study, there are kind of property experiments like fluidity, compressive strength, bleeding measurement, concrete sink for CFT use high fluidity concrete. The property difference between before transmit and after transmit concrete in the mock up test with ready mixed concrete equipment is examined. The variable factors in mock up are diaphragm existence and nonexistence, diaphragm placing hole sizes. To investing the concrete Property under diaphragm, concrete packing ability, hydration heat, core specimen strength tests are performed.

Fabrication of Porous Ceramics and Multi-layered Ceramics Containing Porous Layers; I. Pore Structure (다공성 세라믹스와 다공질층을 포함하는 적층체의 제조에 관한 연구;I. 기공구조)

  • 이해원;윤복규;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1044-1052
    • /
    • 1994
  • Tape casting technique was successfully applied to produce porous ceramics and multi-layered ceramics containing porous layers, where spherical hollow polymer particles were introduced as pore precursors. In the presence of extreme differences in density and size between Al2O3 and pore precursor particles, hindered settling was effective in preventing segregation of component particles and packing behavior of mixed powders was improved through bimodal packing. There were two transitions in packing behavior of mixed powders. The first transition took place at 40~50 vol% pore precursor addition, where majority of pores changed from close to open pore state. The other transition occured at 60~70 vol% pore precursor addition, where pore precursor particles formed a continuous network structure.

  • PDF

The Mechanical Properties of Corrugated Cardboard using Equivalent Evaluation (등가 물성 평가를 이용한 골판지의 물성치)

  • Kwon, Kyung Young;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.157-164
    • /
    • 2014
  • The usage of corrugated cardboard for packing material is increasing in these days because it is light and easy to manufacture packing boxes. However, the structure analysis of packing boxes, made of cardboard, is not well carried. The reason can be deduced that its mechanical properties for structure analysis are not well known. The cardboards are made different shapes with various types of raw materials that are paper-based compound. In addition, the cardboards are considered to be orthotropic material. This research finds mechanical properties of triple layered cardboard which is composed of outer liner and inner liner. The moduli of elasticity and of shear for liners are found from tension test and T-Peel test. The mechanical properties of the cardboard are calculated using the super position method and equivalent evaluation method.

A Capillary Electrochromatographic Microchip Packed with Self-Assembly Colloidal Carboxylic Silica Beads

  • Jeon, In-Sun;Kim, Shin-Seon;Park, Jong-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1135-1140
    • /
    • 2012
  • An electrochromatographic microchip with carboxyl-group-derivatized mono-disperse silica packing was prepared from the corresponding colloidal silica solution by utilizing capillary action and self-assembly behavior. The silica beads in water were primed by the capillary action toward the ends of cross-patterned microchannel on a cyclic olefinic copolymer (COC) substrate. Slow evaporation of water at the front of packing promoted the self-assembled packing of the beads. After thermally binding a cover plate on the chip substrate, reservoirs for sample solutions were fabricated at the ends of the microchannel. The packing at the entrances of the microchannel was silver coated to fix utilizing an electroless silver-plating technique to prevent the erosion of the packed structure caused by the sudden switching of a high voltage DC power source. The electrochromatographic behavior of the microchip was explored and compared to that of the microchip with bare silica packing in basic borate buffer. Electrophoretic migration of Rhodamine B was dominant in the microchip with the carboxyl-derivatized silica packing that resulted in a migration approximated twice as fast, while the reversible adsorption was dominant in the bare silica-packed microchip. Not only the faster migration rates of the negatively charged FITC-derivatives of amino acids but also the different migration due to the charge interaction at the packing surface were observed. The electrochromatographic characteristics were studied in detail and compared with those of the bare silica packed microchip in terms of the packing material, the separation potential, pH of the running buffer, and also the separation channel length.