• Title/Summary/Keyword: structure inference

Search Result 412, Processing Time 0.026 seconds

Design of Neurofuzzy Networks by Means of Linear Fuzzy Inference and Its Application to Software Engineering (선형 퍼지추론을 이용한 뉴로퍼지 네트워크의 설계와 소프트웨어 공학으로의 응용)

  • Park, Byoung-Jun;Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2818-2820
    • /
    • 2002
  • In this paper, we design neurofuzzy networks architecture by means of linear fuzzy inference. The proposed neurofuzzy networks are equivalent to linear fuzzy rules, and the structure of these networks is composed of two main substructures, namely premise part and consequence part. The premise part of neurofuzzy networks use fuzzy space partitioning in terms of all variables for considering correlation between input variables. The consequence part is networks constituted as first-order linear form. The consequence part of neurofuzzy networks in general structure(for instance ANFIS networks) consists of nodes with a function that is a linear combination of input variables. But that of the proposed neurofuzzy networks consists of not nodes but networks that are constructed by connection weight and itself correspond to a linear combination of input variables functionally. The connection weights in consequence part are learned by back-propagation algorithm. For the evaluation of proposed neurofuzzy networks. The experimental results include a well-known NASA dataset concerning software cost estimation.

  • PDF

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.

Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

  • Mandal, Sukomal;Rao, Subba;N., Harish;Lokesha, Lokesha
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.112-122
    • /
    • 2012
  • The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.

Parametric design for mechanical structure using knowledge-based system (역학적 구조에 대한 Knowledge-based 시스템을 이용한 파라메트릭 설계)

  • 이창호;김병인;정무영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1018-1023
    • /
    • 1993
  • In mechanical structure design area, many FEM (Finite Element Method) packages are used. But the design using FEM packages depends on an iterative trial and error manner and general CAD systems cannot cope with the change of parameters. This paper presents a methodology for building a designing system of a mechanical structure. This system can generate the drawing for a designed structure automatically. It consists of three steps: generation of a structure by selection of the parameters, stress analysis, and generation of a drawing using CAD system. FEM module and parametric CAD module are developed for this system. Inference engine module generates the parameters with a rule base and a model base, and also evaluates the current structure. The parametric design module generates geometric shapes automatically with given dimension. Parametric design is implemented with the artificial intelligent technique. In older to the demonstrate the effectiveness of the developed system, a frame set of bicycle was designed. The system was implemented on an SUN workstation using C language under OpenWindows environment.

  • PDF

Implementation and Design of College Information Retrieval System Based On Ontology (온톨로지 기반 대학정보 검색 시스템의 설계 및 구현)

  • Park, Jong-Hoon;Kim, Chul-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.296-301
    • /
    • 2012
  • Currently, in order to develop an intelligent search engine to help users retrieve information effectively, many metodes have been used. The effective retrieval methods of these methods use ontology technology. Ontology technology is the core of the Semantic Web. In the Semantic Web, ontology technology can be used to retrieve related information through the inference engine more accurately and simply on the Semantic Web. In this paper, we implement and design college information retrieval based on ontology to retrieve college class, graduate school class and person class. We have collected the hierarchy structure about the College, graduate school and person informations, and we have used protege editor of the ontology developing tool to design some ontologies with the College informations collected. We also tested the designed ontology with the Inference Engine(Pellet) of protege editor, and implemented college information retrieval system using Inference Engine(Jena) for web services.

Design of Fuzzy Digital PID Controller Using Simplified Indirect Inference Method (간편 간접추론방법을 이용한 퍼지 디지털 PID 제어기의 설계)

  • Chai, Chang-Hyun
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.69-77
    • /
    • 1999
  • This paper describes the design of fuzzy digital PID controller using simplified indirect inference method. First, the fuzzy digital PID controller is derived from the conventional continuous time linear digital PID controller. Then the fuzzification, control-rule base, and defuzzification using SIM in the design of the fuzzy digital controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional digital PID controller, which has the same linear structure, but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one proposed by D. Misir et al.

  • PDF

Probabilistic filtering for a biological knowledge discovery system with text mining and automatic inference (텍스트 마이닝 및 자동 추론 기반 생물학 지식 발견 시스템을 위한 확률 기반 필터링)

  • Lee, Hee-Jin;Park, Jong-C.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.139-147
    • /
    • 2012
  • In this paper, we discuss the structure of biological knowledge discovery system based on text mining and automatic inference. Given a set of biology documents, the system produces a new hypothesis in an integrated manner. The text mining module of the system first extracts the 'event' information of predefined types from the documents. The inference module then produces a new hypothesis based on the extracted results. Such an integrated system can use information more up-to-date and diverse than other automatic knowledge discovery systems use. However, for the success of such an integrated system, the precision of the text mining module becomes crucial, as any hypothesis based on a single piece of false positive information would highly likely be erroneous. In this paper, we propose a probabilistic filtering method that filters out false positives from the extraction results. Our proposed method shows higher performance over an occurrence-based baseline method.

Active Control of Earthquake Responses Using Fuzzy Supervisory Control Technique (퍼지관리제어기법을 이용한 지진응답의 능동제어)

  • 박관순;고현무;옥승용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.75-81
    • /
    • 2001
  • Fuzzy supervisory control method is studied for the active control of earthquake excited structures. The proposed algorithm supervises and tunes previously designed control gains by evaluating the state of a structure through the fuzzy inference mechanism, which uses the information of relative displacements and velocities. Example designs and numerical simulations of earthquake exited three degrees of freedom structures are performed to prove the validity of the proposed control algorithm. Comparative results with conventional LQR method show that the proposed method is effective for the vibration suppression of earthquake excited structures.

  • PDF

Modelling CO2 and NOx on signalized roundabout using modified adaptive neural fuzzy inference system model

  • Sulaiman, Ghassan;Younes, Mohammad K.;Al-Dulaimi, Ghassan A.
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.107-113
    • /
    • 2018
  • Air quality and pollution have recently become a major concern; vehicle emissions significantly pollute the air, especially in large and crowded cities. There are various factors that affect vehicle emissions; this research aims to find the most influential factors affecting $CO_2$ and $NO_x$ emissions using Adaptive Neural Fuzzy Inference System (ANFIS) as well as a systematic approach. The modified ANFIS (MANFIS) was developed to enhance modelling and Root Mean Square Error was used to evaluate the model performance. The results show that percentages of $CO_2$ from trucks represent the best input combination to model. While for $NO_x$ modelling, the best pair combination is the vehicle delay and percentage of heavy trucks. However, the final MANFIS structure involves two inputs, three membership functions and nine rules. For $CO_2$ modelling the triangular membership function is the best, while for $NO_x$ the membership function is two-sided Gaussian.

Design of Learning Fuzzy Controller by the Self-Tuning Algorithm for Equipment Systems (설비시스템을 위한 자기동조기법에 의한 학습 FUZZY 제어기 설계)

  • Lee, Seung
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.71-77
    • /
    • 1995
  • This paper deals with design method of learning fuzzy controller for control of an unknown nonlinear plant using the self-tuning algorithm of fuzzy inference rules. In this method the fuzzy identification model obtained that the joined identification model of nonlinear part and linear identification model of linear part by fuzzy inference systems. This fuzzy identification model ordered self-tuning by Decent method so as to be servile to nonlinear plant. A the end, designed learning fuzzy controller of fuzzy identification model have learning structure to model reference adaptive system. The simulation results show that th suggested identification and learning control schemes are practically feasible and effective.

  • PDF