• Title/Summary/Keyword: structure function

Search Result 6,745, Processing Time 0.035 seconds

Simultaneous Optimal Design of Control-Structure Systems for 2-D Truss Structure (2차원 트러스 구조물에 대한 제어/구조 시스템의 동시최적설계)

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.812-818
    • /
    • 2001
  • This paper proposes an optimum design method of structural and control systems, taking a 2-D truss structure as an example. The structure is supposed to be subjected to initial static loads and disturbances. For the structure, a FEM model is formed, and using modal transformation, the equation of motion is transformed into that of modal coordinates in order to reduce the D.O.F. of the FEM model. The structure is controlled by an output feedback $H^$\infty$$ controller to suppress the effect of the disturbances. The design variables of the simultaneous optimal design of control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H^$\infty$$ norm, that is, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been carried out. Through the consideration of structural weight and $H^$\infty$$ norm, an advantage of the simultaneous optimum design of structural and control systems is shown. Moreover, while the optimized performance index of control is almost kept, we can acquire better design of structural strength.

  • PDF

An advanced criterion based on non-AFR for anisotropic sheet metals

  • Moayyedian, Farzad;Kadkhodayan, Mehran
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1015-1038
    • /
    • 2016
  • In the current research an advanced criterion with non-associated flow rule (non-AFR) for depicting the behavior of anisotropic sheet metals is presented to consider the strength differential effects (SDEs) for these materials. Owing to the fact that Lou et al. (2013) yield function is dependent on structure of an anisotropic material (BCC, FCC and HCP), an advanced yield function with inspiring of Yoon et al. (2014) yield function is proposed which is dependent upon anisotropic structures. Furthermore, to compute Lankford coefficients, a new pressure sensitive plastic potential function which would be dependent to anisotropic structure is presented and coupled with the proposed yield function with employing a non-AFR in a novel criterion which is called here 'dvanced criterion'. Totally eighteen experimental data are required to calibrate the criterion contained of directional tensile and compressive yield stresses for the yield function and directional Lankford coefficients for the plastic potential function. To verify the criterion, three anisotropic sheet metals with different structures are taken as case studies such as Al 2008-T4 (a BCC material), Al 2090-T3 (a FCC material) and AZ31 (a HCP material).

Development of a Process Control Language Using Function Block Configuration (기능블록 구성에 의한 공정제어 언어의 개발)

  • Byung Kook Kim
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.24-34
    • /
    • 1992
  • A process control language is developed using function block configuration, to simplify software development for large scale process control systems, and to implement advanced control algorithms with ease. A function block parser and controller is implemented to be suitable for multi-loop control systems having hierachical structure. On-line change of controller parameter is possible, and inclusion of user defined function block is also possible. By adding plant model block, control performance can be checked in advance. Function blocks of the Smith Predicotor, auto-tuners are implemented to demonstrate usefulness of function block configuration.

  • PDF

Structure of the Mixed Neural Networks Based On Orthogonal Basis Functions (직교 기저함수 기반의 혼합 신경회로망 구조)

  • Kim, Seong-Joo;Seo, Jae-Yong;Cho, Hyun-Chan;Kim, Seong-Hyun;Kim, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.6
    • /
    • pp.47-52
    • /
    • 2002
  • The wavelet functions are originated from scaling functions and can be used as activation function in the hidden node of the network by deciding two parameters such as scale and center. In this paper, we would like to propose the mixed structure. When we compose the WNN using wavelet functions, we propose to set a single scale function as a node function together. The properties of the proposed structure is that while one scale function approximates the target function roughly, the other wavelet functions approximate it finely. During the determination of the parameters, the wavelet functions can be determined by the global search algorithm such as genetic algorithm to be suitable for the suggested problem. Finally, we use the back-propagation algorithm in the learning of the weights.

Optimum mesh size of the numerical analysis for structural vibration and noise prediction (구조물 진동.소음의 수치해석시 최적 요소크기는 .lambda./4이다.)

  • Kim, Jeung-Tae;Kang, Jun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1950-1956
    • /
    • 1997
  • An engineering goal in vibration and noise professionals is to develope quiet machines at the preliminary design stage, and various numerical techniques such as FEM, SEA or BEM are one of the schemes toward the goal. In this paper, the research has been focused on the sensitivity effect of mesh sizes for FEM application so that the optimum size of the mesh that leads to engineering solution within acceptable computing time could be generated. In order to evaluate the mesh size effect, three important parameters have been examined : natural frequencies, number of modes and driving point mobility. First, several lower modes including the fundamental frequency of a 2-D plate structure have been calculated as mesh size changes. Since theoretical values of natural frequencies for a simple structure are known, the deviation between the numerical and theoretical values is obtained as a function of mesh size. The result shows that the error is no longer decreased if the mesh size becomes a quarter wavelength or smaller than that. Second, the mesh size effect is also investigated for the number of modes. For the frequency band up to 1.4 kHz, the structure should have 38 modes in total. As the mesh size reaches to the quarter wavelength, the total count in modes approaches to the same values. Third, a mobility function at the driving point is compared between SEA and FEM result. In SEA application, the mobility function is determined by the modal density and the mass of the structure. It is independent of excitation frequencies. When the mobility function is calculated from a wavelength to one-tenth of it, the mobility becomes constant if the mesh becomes a quarter wavelength or smaller. We can conclude that dynamic parameters, such as eigenvalues, mode count, and mobility function, can be correctly estimated, while saving the computing burden, if a quarter wavelength (.lambda./4) mesh is used. Therefore, (.lambda./4) mesh is recommended in structural vibration analysis.

Survey of Curriculum for 4 Subjects (Structure and Function of Human Body, Clinical Microbiology, Pathophysiology, & Mechanism and Effect of Drugs) of Biological Nursing in Undergraduate Nursing Education (4년제 간호교육기관의 기초간호학 4개 교과목(인체 구조와 기능, 병원미생물학, 병태생리학, 약물의 기전과 효과) 운영 현황)

  • Lee, Kyung-Sook;Choi, Eun-Ok;Jeong, Jae Sim
    • Journal of Korean Biological Nursing Science
    • /
    • v.16 no.1
    • /
    • pp.17-25
    • /
    • 2014
  • Purpose: The purpose of this study was to review the curriculum on biological nursing: structure and function of the human body, clinical microbiology, pathophysiology, and function and effect of drugs. Methods: Data was collected by searching and reviewing internet websites of 102 nursing schools or universities which provide 4 years nursing education in the Republic of Korea. The 74 curriculum on biological nursing science were available and analyzed by title, credits, hours, types of major (core or selective), offering semester, and laboratory practice. Results: The titles of 4 courses were diverse and were offered as core major (core requisites) or selective major. Structure and function of human body was offered in priority with more credits. Laboratory practice was poorly established in most courses. Biological nursing science courses were mostly taught in the second semester of the first year and the first or second semester of second year nursing education courses. Conclusion: There is a need to standardize the curriculum on biological nursing science and to expand the use of titles proposed by academic society. Also further research is necessary to identify curriculum details and to reflect the needs of professors.

Nonlinear Multilayer Combining Techniques in Bayesian Equalizer Using Radial Basis Function Network (RBFN을 이용한 Bayesian Equalizer에서의 비선형 다층 결합 기법)

  • 최수용;고균병;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.452-460
    • /
    • 2003
  • In this paper, an equalizer(RNE) using nonlinear multilayer combining techniques in Bayesian equalizer with a structure of radial basis function network is proposed in order to simplify the structure and enhance the performance of the equalizer(RE) using a radial basis function network. The conventional RE Produces its output using linear combining the outputs of the basis functions in the hidden layer while the proposed RNE produces its output using nonlinear combining the outputs of the basis function in the first hidden layer. The nonlinear combiner is implemented by multilayer perceptrons(MLPs). In addition, as an infinite impulse response structure, the RNE with decision feedback equalizer (RNDFE) is proposed. The proposed equalizer has simpler structure and shows better performance than the conventional RE in terms of bit error probability and mean square error.

Computational Approaches for Structural and Functional Genomics

  • Brenner, Steven-E.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.17-20
    • /
    • 2000
  • Structural genomics aims to provide a good experimental structure or computational model of every tractable protein in a complete genome. Underlying this goal is the immense value of protein structure, especially in permitting recognition of distant evolutionary relationships for proteins whose sequence analysis has failed to find any significant homolog. A considerable fraction of the genes in all sequenced genomes have no known function, and structure determination provides a direct means of revealing homology that may be used to infer their putative molecular function. The solved structures will be similarly useful for elucidating the biochemical or biophysical role of proteins that have been previously ascribed only phenotypic functions. More generally, knowledge of an increasingly complete repertoire of protein structures will aid structure prediction methods, improve understanding of protein structure, and ultimately lend insight into molecular interactions and pathways. We use computational methods to select families whose structures cannot be predicted and which are likely to be amenable to experimental characterization. Methods to be employed included modern sequence analysis and clustering algorithms. A critical component is consultation of the presage database for structural genomics, which records the community's experimental work underway and computational predictions. The protein families are ranked according to several criteria including taxonomic diversity and known functional information. Individual proteins, often homologs from hyperthermophiles, are selected from these families as targets for structure determination. The solved structures are examined for structural similarity to other proteins of known structure. Homologous proteins in sequence databases are computationally modeled, to provide a resource of protein structure models complementing the experimentally solved protein structures.

  • PDF

Study on stress transition mechanism by tensile and fracture characteristics of membrane material at bolting part in clamping part of membrane Structures (막구조 정착부의 볼트접합부 막재료의 신장 및 파단상태를 통한 응력전달체계에 관한 연구)

  • Kim, Hee-Kyun;Shim, Chun-Bo;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.97-105
    • /
    • 2023
  • The membrane structure should maintain the membrane materials in tension for structural stability guaranty. The anchoring part in the membrane structure is an important part. It has the function to introduce tension into membrane materials and function to transmit stress which membrane materials receives to boundary structure such as steel frames. In this paper, it grasps anchoring system of the anchoring part in the membrane structure concerning the fracturing characteristic condition of membrane structure, and the influence which is caused to yield it designates the stress state when breaking the membrane structure which includes the anchoring part and that stress transition mechanism is elucidated as purpose. This paper follows to previous paper, does 1 axial tensile test concerning the bolting part specimen, grasp of fracturing progress of the bolting part and the edge rope and hardness of the rubber, does the appraisal in addition with the difference of bolt tightening torque. As a result, the influence which the bolt anchoring exerts on the fracturing characteristics of the membrane material in the membrane structure anchoring part is examined.

An Improved Function Synthesis Algorithm Using Genetic Programming (유전적 프로그램을 이용한 함수 합성 알고리즘의 개선)

  • Jung, Nam-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.80-87
    • /
    • 2010
  • The method of function synthesis is essential when we control the systems not known their characteristic, by predicting the function to satisfy a relation between input and output from the given pairs of input-output data. In general the most systems operate non-linearly, it is easy to come about problem is composed with combinations of parameter, constant, condition, and so on. Genetic programming is proposed by one of function synthesis methods. This is a search method of function tree to satisfy a relation between input and output, with appling genetic operation to function tree to convert function into tree structure. In this paper, we indicate problems of a function synthesis method by an existing genetic programming propose four type of new improved method. In other words, there are control of function tree growth, selection of local search method for early convergence, effective elimination of redundancy in function tree, and utilization of problem characteristic of object, for preventing function from complicating when the function tree is searched. In case of this improved method, we confirmed to obtain superior structure to function synthesis method by an existing genetic programming in a short period of time by means of computer simulation for the two-spirals problem.