• Title/Summary/Keyword: structure equation

Search Result 2,326, Processing Time 0.026 seconds

The Effect of Child Neglect and Abuse by Parents on School Adjustment of School-Aged Children : The Mediating Effects of Self-Awareness and Peer Attachment (부모의 방임·학대가 학령기 아동의 학교생활적응에 미치는 영향: 학령기 아동의 자아인식과 또래애착의 매개효과)

  • Kim, Hye Gum;Jo, Hye Young
    • Korean Journal of Childcare and Education
    • /
    • v.12 no.1
    • /
    • pp.19-36
    • /
    • 2016
  • The purpose of the present study was to investigate the effect of child neglect and abuse by parents on school adjustment of school-aged children focusing on mediating effect of school-aged children's self-awareness and peer attachment. For this purpose, we analyzed the data of fourth wave Korean Child-Youth Panel Survey(KCYPS) including parents' child neglect and abuse, school-aged children's school adjustment, self-awareness and peer attachment. A total of 2,378 children and their parents using structural equation model of mediating effects responded to the survey. Measurement model and structure model had favorable goodness of fit and the results of structure models on each path were as follows. First, school-aged children's school adaption had negative correlations with parent's child neglect and abuse, but positive correlations with their self-awareness and peer attachment. Second, parent's child neglect and abuse influenced on school-aged children's school adjustment by partial mediators, their self-awareness and peer attachment. These findings showed practical way to increase school-aged children's self-awareness and positive peer attachment.

Sexual Maturity and Gonadal Development of Slime Flounder, Microstomus achne (찰가자미, Microstomus achne의 성성숙과 생식소발달)

  • Byun, Soon-Gyu;Kim, Sung-Yeon;Kim, Jin-Do;Lee, Bae-Ik;Lee, Jong-Ha;Han, Kyeong-Ho;Jeong, Min-Hwan
    • Korean Journal of Ichthyology
    • /
    • v.23 no.3
    • /
    • pp.179-186
    • /
    • 2011
  • Slime flounder, Microstomus achne is distributed in the coastal waters of Korea, west sea of Japan, BoHai, Yellow sea and East china sea. They are mainly caught by bottom trawl net during winter, from December to March. Sexual maturation of slime flounder were investigated using samples collected from commercial catch in the southern coast of Korea from November, 2006 to March, 2007. The ovary of the slime flounder is a conical bag in shape and is bilateral structure develops lengthily from the posterior of the abdomen to the end of the anal fin. The testis also is bilateral in structure, usually located in small size in the abdomen. In females, the gonadosomatic index (GSI) were peaked in January (12.46), then decreased rapidly thereafter. Female GSI values plummeted to 2.72 in March just after spawning. Male GSI values were peaked in December (2.46) before in the spawning season, then decreased slowly thereafter. The reproductive cycle would be classified into three successive developmental stages : maturation stage (November to January), ripe and spawning stage (December to February), degenerative and resting stage (February to March). Relationships between the fish sizes in total length (TL) and the number of ovarian eggs (F), the body weights (BW) and the number of ovarian eggs were indicated by the exponential equation respectively: F=29.027TL-767.8 (r$^2$=0.7686), F=0.3998BW+24.288 (r$^2$=0.8919).

Estimates of Surface Explosion Energy Based on the Transmission Loss Correction for Infrasound Observations in Regional Distances (인프라사운드 대기 전파 투과손실 보정을 통한 원거리 지표폭발 에너지 추정)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.478-489
    • /
    • 2020
  • This study presents an analysis of infrasonic signals from two accidental explosions in Gwangyang city, Jeonnam Province, Korea, on December 24, 2019, recorded at 12 infrasound stations located 151-435 km away. Infrasound propagation refracted at an altitude of ~40 km owing to higher stratospheric wind in the NNW direction, resulting in favorable detection at stations in that direction. However, tropospheric phases were observed at stations located in the NE and E directions from the explosion site because of the strong west wind jet formed at ~10 km. The transmission losses on the propagation path were calculated using the effective sound velocity structure and parabolic equation modeling. Based on the losses, the observed signal amplitudes were corrected, and overpressures were estimated at the reference distance. From the overpressures, the source energy was evaluated through the overpressure-explosive charge relationship. The two explosions were found to have energies equivalent to 14 and 65 kg TNT, respectively. At the first explosion, a flying fragment forced by an explosive shock wave was observed in the air. The energy causing the flying fragment was estimated to be equivalent to 49 kg or less of TNT, obtained from the relationship between the fragment motion and overpressure. Our infrasound propagation modeling is available to constrain the source energy for remote explosions. To enhance the confidence in energy estimations, further studies are required to reflect the uncertainty of the atmospheric structure models on the estimations and to verify the relationships by various ground truth explosions.

Generalization of Integration Methods for Complex Inelastic Constitutive Equations with State Variables (상태변수를 갖는 비탄성 구성식 적분법의 일반화)

  • Yun, Sam-Son;Lee, Sun-Bok;Kim, Jong-Beom;Lee, Hyeong-Yeon;Yu, Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1075-1083
    • /
    • 2000
  • The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. These equations consist of the definition of inelastic strain and the evolution of the state variables introduced to quantify the irreversible processes occurred in the material. With respect to the definition of the inelastic strain, the inelastic constitutive models can be categorized into elastoplastic model, unified viscoplastic model and separated viscoplastic model and the different integration methods have been applied to each category. In the present investigation, the generalized integration method applicable for various types of constitutive equations is developed and implemented into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using line-search technique in combination with Newton method. The strategy to control the time increment for the improvement of the accuracy of the numerical integration is proposed. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method. The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. These equations consist of the definition of inelastic strain and the evolution of the state variables introduced to quantify the irreversible processes occurred in the material. With respect to the definition of the inelastic strain, the inelastic constitutive models can be categorized into elastoplastic model, unified viscoplastic model and separated viscoplastic model and the different integration methods have been applied to each category. In the present investigation, the generalized integration method applicable for various types of constitutive equations is developed and implemented into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using line-search technique in combination with Newton method. The strategy to control the time increment for the improvement of the accuracy of the numerical integration is proposed. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method.

Dynamic Response Analysis of Pressurized Air Chamber Breakwater Mounted Wave-Power Generation System Utilizing Oscillating Water Column (진동수주형 파력발전 시스템을 탑재한 압축공기 주입식 방파제의 동적거동 해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Yook, Sung-Min;Jung, Yeong-Hoon;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.225-243
    • /
    • 2014
  • As the economic matters are involved, applying the WEC, which is used for controlling waves as well as utilizing the wave energy on existing breakwater, is preferred rather than installing exclusive WEC. This study examines the OWC mounted on a pressurized air chamber floating breakwater regarding the functionality of both breakwater and wave-power generation. In order to verify the performance as a WEC, the velocity of air flow from pressurized air chamber to WEC has to be evaluated properly. Therefore, numerical simulation was implemented based on BEM from linear velocity potential theory as well as Boyle's law with the state equation to analyze pressurized air flow. The validity of the obtained values can be determined by comparing the previous results from numerical analysis and empirically obtained values of different shapes. In the actual numerical analysis, properties of wave deformation around OWC system mounted on fixed type and floating type breakwaters, motions of the structure with air flow velocities are investigated. Since, the wind power generating system can be hybridized on the structure, it is expected to be applied on complex power generation system which generates both wind and wave power energy.

Discussion on Optimal Shape for Wave Power Converter Using Oscillating Water Column (진동수주형 파력발전구조물의 최적형상에 대한 검토)

  • Lee, Kwang-Ho;Park, Jung-Hyun;Baek, Dong-Jin;Cho, Sung;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.345-357
    • /
    • 2011
  • Recently, as part of diversifying energy sources and earth environmental issues, technology development of new renewable energy using wave energy is actively promoted and commercialized around Europe and Japan etc. In particular, OWC(Oscillating Water Column) wave power generation system using air flow induced by vertical movement of the water surface by waves in an air-chamber within caisson is known as the most efficient wave energy absorption device and therefore, is one of the wave power generation apparatus the closest to commercialization. This study examines air flow velocity, which operates turbine(Wells turbine) directly in oscillating water column type wave power generation structure from two-and three-dimensional numerical experiments and discusses optimal shape of oscillating water column type wave power generation structure by estimating the maximum flow rate of air according to change in shape. The three-dimensional numerical wave flume was applied in interpretation for this study which is the model for the immiscible two-phase flow based on the Navier-Stokes Equation. From this, it turned out that size of optimal shape appears differently according to the incident wave period and air flow is maximized at the period where minimum reflection ratio occurs.

Structure and physical properties of Earth Crust material in the Middle of Korean Peninsula(2) : Comparison between elastic Velocity and point-load of core specimen of sedimentary rocks. (한반도 중부권 지각물질의 구조와 물성연구(2) : 퇴적암류 코아시료의 탄성파 속도와 점재하 강도 비교)

  • 송무영;황인선
    • The Journal of Engineering Geology
    • /
    • v.3 no.1
    • /
    • pp.21-37
    • /
    • 1993
  • In order to investigate the correlation of sedimentary rock properties. specific gravity, porosity, water content, sonic wave velodty, and point4oad strength index of core samples of limestones, sandstones and shales were measured. The relationships between density and velocity show $V_p=16300d-38719.3,{\;}V_s1896.4d-29225.1$ of regression equation for sandstones and $Vp=4085d-10264.8,{\;}V_s=3519d-7841.3$ for shales and <$Vp=4085d^2-20747d+303,{\;}V_s=3899d^2-21442d+318$ for limestones. Seismic wave velocity of shales which have high density is lower than that of sandstones, and this seems to be an effect of bedding in shale. P-wave velocity and S-wave velocity of limestones, sandstones and shales show the linear relationships as a whole. The regression equations are respectively calculated V_s=0.26V_p+1041.6m/sec,{\;}V_s=0.43V_p+424.2m/sec,{\;}and{\;}Vs=0.51V_p+261.9m/sec$ and the correlation coefficients of the velocity show r= 0.86 in sandstones, r= 0.75 in limestones and r=0.86 in shales. According to the point4oad strength test for limestones, point4ord strength anisotropy was not so dear even though the specimens show generally the banded structure. Variations of dip angle of bedding whihin the range $30^{\circ}-60^{\circ}$ does not have much influence upon the diametral strength index and axial strength index. From the result of point load test, P-wave velocity increases with point4ord strength index but the regression equations are $V_p=98.5lI{s_d}+4082.1m/sec,{\;}V_p=106.41{s_a}+3954m/sec$ and their correlation coefficient is low.

  • PDF

Rheological Properties of Rehydrated Suspensions of Freeze Dried Kochujang Powders (동결건조 분말고추장의 재수화시 리올로지 특성)

  • Kim, Suk-Shin;Chang, Kyu-Seob;Yoon, Han-Kyo;Lee, Sang-Kyu;Lee, Shin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.81-88
    • /
    • 1987
  • Rheological properties of rehydrated suspensions of two kinds of freeze dried Kochujang powders, processed at different freezing rates, were compared with raw Kochujang using Brookfield wide-gap rotational viscometer at $25^{\circ}C-60^{\circ}C$. Shear rates ranged from $0.1965\;sec^{-1}$ to $1.9650\;sec^{-1}$ and solid content ranged from 47% to 56%. Rehydrated suspensions of quickly frozen Kochujang powder and slowly frozen Kochujang powder, and raw Kochujang exhibited pseudoplastic behaviors with yield stress and presented thixotropic properties which followed the second-order kinetic behavior proposed by Tiu. Suspensions of Kochujang powders exhibited considerably higher decaying rates than raw Kochujang. The dependency of the equilibrium structure parameter on the shear rate was weak, and there were no significant differences among the values of structure parameters of three samples. The temperature dependency of the apparent viscosity of Kochujang suspension was fully expressed by Arrhenius equation and activation energies of suspensions of quickly frozen Kochujang powder and slowly frozen Kochujang powder, and raw Kochujang were 2.21, 2.18, and 2.32 Kcal/g.mole respectively. Consistency indices of three samples increased with solid content and decreased with temperature. Flow behavior indices of three samples showed no considerable dependency on the temperature and solid content. There were no significant differences in the rheological properties between two Kochujang powders.

  • PDF

Growth and Electrical Properties of ZnAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 ZnAl2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Hyangsook;Bang, Jinju;Lee, Kijung;Kang, Jongwuk;Hong, Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.714-721
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $ZnAl_2Se_4$ single-crystal thin films was prepared in a horizontal electric furnace. These $ZnAl_2Se_4$ polycrystals had a defect chalcopyrite structure, and its lattice constants were $a_0=5.5563{\AA}$ and $c_0=10.8897{\AA}$.To obtain a single-crystal thin film, mixed $ZnAl_2Se_4$ crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of the $ZnAl_2Se_4$ single-crystal thin film were $8.23{\times}10^{16}cm^{-3}$ and $287m^2/vs$ at 293 K, respectively. To identify the band gap energy, the optical absorption spectra of the $ZnAl_2Se_4$ single-crystal thin film was investigated in the temperature region of 10-293 K. The temperature dependence of the direct optical energy gap is well presented by Varshni's relation: $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=3.5269eV$, ${\alpha}=2.03{\times}10^{-3}eV/K$ and ${\beta}=501.9K$ for the $ZnAl_2Se_4$ single-crystal thin film. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnAl_2Se_4$ were estimated to be 109.5 meV and 124.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n = 21.

Calculation of Deterioration Depth of Major Rock Type Slopes caused by Freezing-Thawing in Korea (국내 주요 암종별 사면의 동결-융해에 의한 열화심도 계산)

  • Kwon, O-Il;Baek, Yong;Yim, Sung-Bin;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.359-365
    • /
    • 2007
  • Freezing and thawing cycle is one of the major weathering-induced factors in the mechanical weathering of the rock mass. This natural process accelerates rock weathering process by breaking down the parent rock materials and makes soil or weathered rock formation in a rock slope surface zone. It can also cause reduction of the shear strength in slopes. It is important to calculate the deterioration depth caused by freezing-thawing for a slope stability analysis. In this study, deterioration depths of rock slope due to freezing-thawing were calculated using the 1-D heat conductivity equation. The temperature distribution analysis was also carried out using collected temperature distribution data for last five years of several major cities in Korea. The analysis was performed based on the distributed rock types in study areas. Thermal conductivities, specific heats and densities of the calculation rocks are tested in the laboratory. They are thermal properties of rocks as input parameters for calculating deterioration depths. Finally, the paper is showing the calculated deterioration depths of each rock type slopes in several major cities of Korea.