• 제목/요약/키워드: structure corner

검색결과 267건 처리시간 0.02초

선형 회귀분석 기반 합산영역테이블 정밀도 향상 기법 (Linear Regression-Based Precision Enhancement of Summed Area Table)

  • 정주현;이성길
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권11호
    • /
    • pp.809-814
    • /
    • 2013
  • 합산영역테이블은 이미지 픽셀 주변 임의의 사각 영역 내 픽셀 값의 합을 4개 픽셀의 합차로 표현할 수 있는 자료구조이다. 그러나 합산영역테이블은 픽셀의 값을 한쪽 모서리에서 다른 쪽 모서리로 순차 누적하므로, 이미지의 크기가 큰 경우에 부동소수점 방식의 표현 범위를 초과하는 문제가 일어날 수 있다. 이를 해결하기 위해 본 논문은 선형 회귀분석을 이용하여 이미지를 근사하고, 회귀분석식과의 차이만을 누적하여 정밀도 누적 오차를 감소시킬 수 있는 제안한다. 또한, 이미지의 복원 시 회귀분석식의 합을 2중 적분을 이용하여 상수시간에 구할 수 있는 방법을 함께 제안 한다. 이미지의 복원에 대한 실험을 수행하였고, 결과는 제안하는 방식이 일반적인 고정오프셋 방식보다 누적 오차를 감소시킴을 보였다.

Correlation between torsional vibration and translational vibration

  • Jeng, V.;Tsai, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제13권6호
    • /
    • pp.671-694
    • /
    • 2002
  • This paper presents theoretical investigation on the cross correlation between torsional vibration ($u_{\theta}$) and translation vibration ($u_x$) of asymmetrical structure under white noise excitation. The formula reveals that the cross correlation coefficient (${\rho}$) is a function of uncoupled frequency ratio (${\Omega}={\omega}_{\theta}/{\omega}_x$), eccentricity, and damping ratio (${\xi}$). Simulations involving acceleration records from fifteen different earthquakes show correlation coefficients results similar to the theoretical correlation coefficients. The uncoupled frequency ratio is the dominating parameter to ${\rho}$; generally, ${\rho}$ is positive for ${\omega}_{\theta}/{\omega}_x$ > 1.0, negative for ${\omega}_{\theta}/{\omega}_x$ < 1.0, and close to zero for ${\omega}_{\theta}/{\omega}_x$ = 1.0. When the eccentricity or damping ratio increases, ${\rho}$ increases moderately for small ${\Omega}$ (< 1.0) only. The relation among $u_x$, $u_{\theta}$ and corner displacement are best presented by ${\rho}$; a simple way to hand-calculate the theoretical dynamic corner displacements from $u_x$, $u_{\theta}$ and ${\rho}$ is proposed as an alternative to dynamic analysis.

CFD 시뮬레이션 기반 초임계 LNG용 사인함수 PCHE 설계 (Design of sinusoidal shape channel PCHEs for supercritical LNG based on CFD simulation)

  • 판진싱;염은섭
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.69-76
    • /
    • 2021
  • Printed circuit heat exchanger (PCHE) is a compact heat exchanger with good heat transfer performance, high structure integrity, and reliability over a wide range of temperatures and pressures. Instead of the traditional zigzag and straight shape channel, the sinusoidal shape channel was adopted in this study to investigate the relation of thermal-hydraulic performance and waviness factors (period and amplitude). The local flow characteristics and the heat flux distribution were compared to verify the effects of period and amplitude on heat transfer performance. As the period of channel becomes shorter, the rapid change of the flow direction can produce high flow separation around the corner leading to the disturbance of the boundary layer opposite wall. The nonuniform distribution of flow velocity appeared around the corner positions can promote fluid mixing and lead to higher thermal performance. An evaluation index was used to compare the comprehensive performance of PCHE considering the Nusselt number and Fanning factor. Based on the simulation results, the optimal design parameters of PCHE channel shape were found that the channel with an equivalent bending angle of 15° offers the highest heat flux capacity.

Seismic performance improvement of RC buildings with external steel frames

  • Ecemis, Ali Serdar;Korkmaz, Hasan Husnu;Dere, Yunus
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.343-353
    • /
    • 2021
  • In this study, in order to improve the seismic performance of existing reinforced concrete (RC) framed structures, various external attachment of corner steel frame configurations was considered as a user-friendly retrofitting method. The external steel frame is designed to contribute to the lateral stiffness and load carrying capacity of the existing RC structure. A six-story building was taken into account. Four different external corner steel frame configurations were suggested in order to strengthen the building. The 3D models of the building with suggested retrofitting steel frames were developed within ABAQUS environment using solid finite elements and analyzed under horizontal loadings nonlinearly. Horizontal top displacement vs loading curves were obtained to determine the overall performance of the building. Contributions of steel and RC frames to the carried loads were computed individually. Load/capacity ratios for the ground floor columns were presented. In the study, 3D rendered images of the building with the suggested retrofits are created to better visualize the real effect of the retrofit on the final appearance of the façade of the building. The analysis results have shown that the proposed external steel frame retrofit configurations increased the lateral load carrying capacity and lateral stiffness and can be used to improve the seismic performance of RC framed buildings.

SiO2/P+ 컬렉터 구조를 가지는 1700 V급 고전압용 IGBT의 설계 및 해석에 관한 연구 (Design and Analysis of Insulator Gate Bipolor Transistor (IGBT) with SiO2/P+ Collector Structure Applicable to 1700 V High Voltage)

  • 이한신;김요한;강이구;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제19권10호
    • /
    • pp.907-911
    • /
    • 2006
  • In this paper, we propose a new structure that improves the on-state voltage drop and switching speed in Insulated Gate Bipolar Transistors(IGBTs), which can be widely used in high voltage semiconductors. The proposed structure is unique in that the collector area is divided by $SiO_2$, whereas the conventional IGBT has a planar P+ collector structure. The process and device simulation results show remarkably improved on-state and switching characteristics. Also, the current and electric field distribution indicate that the segmented collector structure has increased electric field near the $SiO_2$ corner, which leads to an increase of electron current. This results in a decrease of on-state resistance and voltage drop to $30%{\sim}40%$. Also, since the area of the P+ region is decreased compared to existing structures, the hole injection decreases and leads to an increase of switching speed to 30 %. In spite of some complexity in process procedures, this structure can be manufactured with remarkably improved characteristics.

Slot 구조를 이용한 920MHz 소형 RFID 리더 안테나 다구찌설계 연구 (The design of a 920MHz compact RFID reader antenna of slot structure using the Taguchi's Method)

  • 권소현;고재형;김형석
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2009년도 정보통신설비 학술대회
    • /
    • pp.289-292
    • /
    • 2009
  • In this paper, an optimum design center frequency proposes portable RFID reader antenna that is 920MHz frequency using the Taguchi's Method. Proposed antenna is cut corner of opposite angle and it's structure that have slots in four sides microstrip patch of a perfect square shape. This slot structure can miniaturize microstrip patch antenna and confirmed through an experiment that size of antenna about 18% decreases than structure that slot does not exist. Because compact antenna that have structure of slot changes according to complex design variables, analysis and experimental design for minimization of experiment number of times are required for optimum antenna design. In this research, designed antenna that have optimum structure when introduce and designs table of orthogonal arrays of the Taguchi's Method been experimental design that can minimize analysis and experiment number of times, achieve responsiveness analysis of main elements and analyzes the effect and minimizes design repeat with analysis result. Presented experiment result about antenna special quality that permittivity is 4.4 and manufactures to board of Epoxy 3.2T.

  • PDF

Study on failure mechanism of multi-storeyed reinforced concrete framed structures

  • Ahmed, Irfan;Sheikh, Tariq Ahmad;Gajalakshmi, P.;Revathy, J.
    • Advances in Computational Design
    • /
    • 제6권1호
    • /
    • pp.1-13
    • /
    • 2021
  • Failure of a Multi-storeyed reinforced concrete framed structure occurs when a primary vertical structural component is isolated or made fragile, due to artificial or natural hazards. Load carried by vertical component (column) is transferred to neighbouring columns in the structure, if the neighbouring column is incompetent of holding the extra load, this leads to the progressive failure of neighbouring members and finally to the failure of partial or whole structure. The collapsing system frequently seeks alternative load path in order to stay alive. One of the imperative features of collapse is that the final damage is not relative to the initial damage. In this paper, the effect on the column and beam adjacent to statically removed vertical element in terms of axial force, shear force and bending moment is investigated. Using Alternate load path method, numerical modelling of two dimensional one bay, two bay with variation in storey heights are analysed with FE model in order to obtain better understanding of failure mechanism of multi-storeyed reinforced concrete framed structure. The results indicate that the corner column is more susceptible to progressive collapse when compared to middle column, using this simplified methodology one can easily predict how the structure can be made to stay alive in case of sudden failure of any horizontal or vertical structural element before designing.

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

추가 상재하중을 받는 지중박스구조물의 우각부에 대한 프리플렉스 부재를 이용한 보강공법 (Strength Method Using Pre-flexed Members for the Corner of Underground Box Structures under Additional Surface Load)

  • 정지승;이진혁;김기암
    • 한국안전학회지
    • /
    • 제31권5호
    • /
    • pp.102-108
    • /
    • 2016
  • This paper presents a new strength method of underground box structures under additional surface load. An L-bracing using pre-flexed steel member threads called the "Pre-flex strength method" is used to improve capacity of the RC box structure under earth pressure due to additional surface load. The pre-flexed steel member is fixed the top and bottom of the structure after chemical anchor was installed by drilling hole on the box structure. The structural performance was evaluated analytically. 3 types of underground RC box structure were used; $2.0m{\times}2.0m$, $3.0m{\times}3.0m$ and $4.0m{\times}4.0m$. For the performance evaluation, structure analysis were performed on moment and shear resisting structures with and without pre-flex strength method. Numerical results confirmed that the proposed strength member system installed on underground RC box structures enhanced the strength capacity. The feasible region of the proposed pre-flex strength method in accordance with the earth pressure due to additional surface depth was evaluated.

고내압 전력 스위칭용 AlGaN/GaN-on-Si HEMT의 게이트 전계판 구조 최적화에 대한 이차원 시뮬레이션 연구 (Two-dimensional Simulation Study on Optimization of Gate Field Plate Structure for High Breakdown Voltage AlGaN/GaN-on-Si High Electron Mobility Transistors)

  • 이호중;조준형;차호영
    • 대한전자공학회논문지SD
    • /
    • 제48권12호
    • /
    • pp.8-14
    • /
    • 2011
  • 본 논문에서는 이차원 소자 시뮬레이션을 활용하여 주어진 게이트-드레인 간격에서 AlGaN/GaN-on-Si HEMT (high electron mobility transistor) 의 고항복전압 구현을 위한 게이트 전계판의 최적화 구조를 제안하였다. 게이트 전계판 구조를 도입하여 게이트 모서리의 전계를 감소시켜 항복전압을 크게 증가시킬 수 있음을 확인 하였으며, 이때 전계판의 길이와 절연막의 두께에 따라 게이트 모서리와 전계판 끝단에서 전계분포의 변화를 분석하였다. 최적화를 위하여 시뮬레이션을 수행한 결과, 1 ${\mu}m$ 정도의 짧은 게이트 전계판으로도 효과적으로 게이트 모서리의 전계를 감소시킬 수 있으며 전계판의 길이가 너무 길어지면 전계판과 드레인 사이의 남은 길이가 일정 수준 이하로 감소되어 오히려 항복전압이 급격하게 감소함을 보였다. 전 계판의 길이가 1 ${\mu}m$ 일 때 최대 항복전압을 얻었으며, 게이트 전계판의 길이를 1 ${\mu}m$로 고정하고 $SiN_x$ 박막의 두께를 변화시켜본 결과 게이트 모서리와 전계판 끝단에서의 전계가 균형을 이루면서 항복전압을 최대로 할 수 있는 최적의 $SiN_x$ 박막 두께는 200~300 nm 인 것으로 나타났다.