• Title/Summary/Keyword: structure analysis method

Search Result 9,225, Processing Time 0.036 seconds

Nonlinear aerostatic analysis of long-span suspension bridge by Element free Galerkin method

  • Zamiria, Golriz;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.75-84
    • /
    • 2020
  • The aerostatic stability analysis of a long-span suspension bridge by the Element-free Galerkin (EFG) method is presented in this paper. Nonlinear effects due to wind structure interactions should be taken into account in determining the aerostatic behavior of long-span suspension bridges. The EFG method is applied to investigate torsional divergence of suspension bridges, based on both the three components of wind loads and nonlinearities of structural geometric. Since EFG methods, which are based on moving least-square (MLS) interpolation, require only nodal data, the description of the geometry of bridge structure and boundaries consist of defining a set of nodes. A numerical example involving the three-dimensional EFG model of a suspension bridge with a span length of 888m is presented to illustrate the performance and potential of this method. The results indicate that presented method can effectively be applied for modeling suspension bridge structure and the computed results obtained using present modeling strategy for nonlinear suspension bridge structure under wind flow are encouragingly acceptable.

A Study on the Structural Modification of the Open Box Type Structure by Using the Stiffener (보강재를 이용한 열린 상자형 구조물의 구조변경법에 관한 연구)

  • 박석주;최창우;오창근;왕지석;정재현
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.57-64
    • /
    • 1996
  • The objectiv of this paper is to offer the method of the optimum structural modification by fixing the stiffener on the structure. The vibrational characteristics of a open box type structure are analyzed by the sub-structure synthesis method and sensitivies of each sub-structure are calculated by sensitivity analysis method. The positions to modify are found and the quantities to change are obtained by optimization techniques. As the result, it was found that; (1) The sensitivites of the natural frequency could easily be calculated by the sensitivity analysis method and the optimum position to fix stiffeners could be found. (2) The exact size of stiffeners could be calculated by the optimum structural modification method and the natural frequency could be easily shifted to the objective value. (3) It could be confirmed that the stiffener is a effective tool for accomplishing structural modification.

  • PDF

Reliability Analysis of Frame Strctures (뼈대구조의 신뢰성 해석)

  • 이정재;고재군;김한중
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.116-127
    • /
    • 1994
  • A reliability analysis model for the frame structure which grafts the discretized ideal plastic method to the stochastic finite element method is introduced. The proposed method simmulates realistically the sequencial occurrence of plastic hinges and yields the probability of failure directly from the geometrical and material properties of a frame structure. The presented method can also take into account the uncertainties inherent in loads and resisten- ces through the stochastic finite element technique. The analysis results are compared with those of the Monte Carlo Simmulation, the Bound Theory, and the fs-unzipping method, and show good agreement.

  • PDF

Numerical study of performance of soil-steel bridge during soil backfilling

  • Beben, Damian
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.571-587
    • /
    • 2012
  • This paper presents results of a numerical analysis performed on a corrugated steel plate (CSP) bridge during a backfilling process. The analysed bridge structure was a box culvert having a span of 12315 mm as well as a clear height of 3550 mm. Obtained calculation results were compared with the experimental ones. The paper is presented with the application of the Fast Lagrangian Analysis of Continua (FLAC) program based on the finite differences method (FDM) to determine behaviour of the soil-steel bridge structure during backfilling. The assumptions of a computational 2D model of soil-steel structure with a non-linear interface layer are described. Parametric analysis of the interface element is also given in order to receive the most realistic calculation results. The method based on this computational model may be used with large success to design calculations of this specific type of structure instead of the conventional and fairly inaccurate analytical methods. The conclusions drawn from such analysis can be helpful mostly for the assessment of the behaviour of steel-soil bridge structures under loads of backfilling. In consideration of an even more frequent application of this type of structure, conclusions from the conducted analysis can be generalized to a whole class of similar structural bridge solutions.

A Study on the Reduction Analysis of the Response of the Mega-Float Offshore Structure in Regular Wave (1st Report) (대형 부류해양구조물의 파낭중 응답의 저감해석에 관한 연구(제1보))

  • 박성현;박석주
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.1
    • /
    • pp.85-95
    • /
    • 2000
  • In the country where the population concentrates in the metropolis with the narrow land, development of the ocean space is necessary. Recently, mega-float offshore structure has been studied as one of the effective utilization of the ocean space. And very large floating structures are now being considered for various applications such as floating airports, offshore cities and so on. This very large structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. And it is necessary to examine the effect of ocean wave external force received from the natural environment. In this study, the mat-type large floating structure is made to be analytical model. And the analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. The validity of analysis method is verified in comparison with the experimental result in the Japan Ministry of Transport Ship Research Institution. In order to know the characteristics of the dynamic response of the large floating structures, effects of wavelength, bending rigidity of the structure, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

Static Aeroelastic analysis of Morphing flap wign through FSI analysis method (FSI를 이용한 모핑 플랩 날개의 정적 공탄성 해석)

  • Kim, Jonghwan;Ko, Seughee;Bae, Jaesung;Hwang, Jaihyuk
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • The morphing flap wing has different structure unliked general wing structure. The actuated chord length of the morphing flap was more longer than conventional wing flap. In this reason, morphing flap wing structure was important to bending moment by aerodynamic lift force. In this study, through the fluid-structure interaction using computational fluid dynamics and structure finite element analysis to apply that the morphing flap wing's static aeroelastic stability analysis.

A study on the Motion Analysis of the Fishing Spot of Floating Offshore Structure Type (부유체식 바다 낚시터의 동요해석에 관한 연구)

  • 박성현;박석주;이돈출
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1006-1012
    • /
    • 2003
  • Recently, floating offshore structure is studied as one of the effective utilization of the ocean space. And floating structure are now being considered for various applications such as floating airports, offshore cities and so on. The motion analysis of the fishing spot of floating offshore structure as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this structure. And the analysis is carried out using the boundary element method in the fluid division. In order to know the characteristics of the motion of the floating fishing spot structures, effects of wavelength, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

Seismic Analysis of Tunnel Structures (터널구조물의 내진해석)

  • Lee, In-Mo;An, Dae-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.3-15
    • /
    • 2001
  • Generally, it has been noted that underground structures have a consistent record of suffering much less damage than surface facilities during earthquakes; but it is still necessary to illustrate the dynamic response of tunnel structures subject to earthquake loadings and to provide the appropriate method for the seismic analysis of underground tunnel structures since many types of underground structures have been and will be constructed in countries situated within seismic zones. In this study, first, seismic analyses for underground tunnel structures are performed by using quasistatic analysis method and dynamic analysis method. Second, seismic analyses in tunnel portals are performed by using above methods. The results of seismic analyses for the tunnel structure show that the tunnel structure conforms to ground deformation and that seismic design by using the quasi-static analysis method is more conservative than that by using the dynamic analysis. The results of the dynamic FEM analysis for the tunnel structure show that the simplified 2-D FEM analysis using a sine wave rather than the 3-D FEM analysis can be adopted for seismic analysis. Finally, the results of the dynamic FEM analysis in tunnel portals show that the force acting on the lining is largest near to the tunnel portal when an earthquake wave propagates parallel to tunnel axis.

  • PDF

Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems (2차원 유체-구조뭍-지반계의 지진응답해석)

  • 윤정방;장수혁;김재민;홍선기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.289-296
    • /
    • 2000
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF

Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems (2차원 유체-구조물-지반계의 지진응답해석)

  • 윤정방;장수혁;김재민
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.132-137
    • /
    • 2001
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF