• 제목/요약/키워드: structure analysis method

검색결과 9,201건 처리시간 0.034초

Mega-Float의 동적 특성 해석 (Dynamic Characteristics Analysis of Mega-Float Offshore Structure)

  • 박성현;박석주
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2001년도 춘계 공동학술발표회 논문집
    • /
    • pp.66-70
    • /
    • 2001
  • Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And mega-structure are now being considered for various applications such as floating airports, offshore cities and so on. This mega-float structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. The analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. In order to know the characteristics of the dynamic response of the mega-float structures, effects of wavelength, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

선수 플레어 구조손상 해석 (Damage Analysis of Bow-Flare Structure)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • 대한조선학회논문집
    • /
    • 제40권3호
    • /
    • pp.37-44
    • /
    • 2003
  • In rough seas, bow-flare regions of the sea-going ships are subject to high impact pressures due to the bow-flare slamming and panting. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, bow-flare damage analysis is performed for 17 ships (total number of damage/non-damage data is 782). Based on this analysis, a new design standard and method for bow-flare structure (shell plate, frame and web frame) is proposed. 80.4% of the present damage/non-damage data were well-explained by this new design standard.

송풍기 임펠러의 순환대칭성을 이용한 고유치해석 (Eigenvalue Analysis of a Blower Impeller Using Cyclic Symmetry)

  • 김창부;안영철
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.523-530
    • /
    • 2000
  • In this paper we present an efficient method for finite element vibration analysis of a structure with cyclic symmetry and applied it to calculating the natural vibration characteristics for a blower impeller. Blower impeller having a cyclically symmetric structure is composed of circumferentially repeated substructures., The whole-structure is partitioned into substructures and then finite element vibration analysis is performed for a substructure using transformed equations for each number of nodal diameter which are derived from discrete Fourier transform in consideration of the cyclic symmetry. natural vibration characteristics for three kinds of models which are blower impeller without support ring with small support ring and with large support ring are numerically analyzed and compared. Accuracy and efficiency of the present method are verified by comparison of results of the analysis with substructure and with whole-structure. Also the results of the analysis by cyclic symmetry module(SOL 115) of MSC/NASTRAN are presented and compared.

  • PDF

주상복합구조물의 효율적인 3차원 해석 (Efficient 3D Analysis of Building Structures with A Rigid Floor System)

  • 황현식;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.239-246
    • /
    • 1996
  • Very stiff floor system in a residential-commercial building causes some problems in the numerical analysis procedure due to significant difference in stiffness with adjacent structural elements. Static analysis of structure with a stiff transfer-floor can be peformed approximately in two steps for upper and lower pons for the structure. However, it is impossible to perform dynamic analysis in two steps with separate models. An efficient method for dynamic analysis of a structure with a rigid floor system is proposed in this study. The matrix condensation technique is employed to reduce the degree of freedom for upper and lower parts of the structure and a beam elements with rigid bodies of both ends are introduce to model the rigid floor system. Efficiency end accuracy of the proposed method ore verified through analysis of several example structures.

  • PDF

Damage detection in stiffened plates by wavelet transform

  • Yang, Joe-Ming;Yang, Zen-Wei;Tseng, Chien-Ming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권2호
    • /
    • pp.126-135
    • /
    • 2011
  • In this study, numerical analysis was carried out by using the finite element method to construct the first mode shape of damaged stiffened plates, and the damage locations were detected with two-dimensional discrete wavelet analysis. In the experimental analysis, four different damaged stiffened structures were observed. Firstly, each damaged structure was hit with a shaker, and then accelerometers were used to measure the vibration responses. Secondly, the first mode shape of each structure was obtained by using the wavelet packet, and the location of cracks were also determined by two-dimensional discrete wavelet analysis. The results of the numerical analysis and experimental investigation reveal that the proposed method is applicable to detect single crack or multi-cracks of a stiffened structure. The experimental results also show that fewer measurement points are required with the proposed technique in comparison to those presented in previous studies.

연성해석과 통계적 방법을 이용한 Butterfly Valve의 다목적 최적설계 (Multi-objective Optimization of Butterfly Valve using the Coupled-Field Analysis and the Statistical Method)

  • 배인환;이동화;박영철
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.127-134
    • /
    • 2004
  • It is difficult to have the existing structural optimization using coupled field analysis from CFD to structure analysis when the structure is influenced of fluid. Therefore in an initial model of this study after doing parameter design from the background of shape using topology optimization. and it is making a approximation formula using by the CFD-structure coupled-field analysis and design of experiment. By using this result, we conducted multi-objective optimization. We could confirm efficiency of stochastic method applicable in the scene of structure reliability design to be needed multi-objective optimization. And we presented a way of design that could overcome the time and space restriction in structural design such as the butterfly valve with the less experiment.

다방향불규칙파중의 Pontoon형의 초대형부유식해양구조물에 대한 유탄성응답 특성 (Hydroelastic Behavior for a Very Lagre Floating Structure of Poontoon-Type in Multi-Directional Irregular Waves)

  • 김철현;조효제;이승철;구자삼
    • 한국해양공학회지
    • /
    • 제20권4호
    • /
    • pp.83-90
    • /
    • 2006
  • Recently, as the technology of utilization for the ocean space is being advanced, floating structures are asked for being mare and mare huge-scale. A very large floating structure(VLFS) is considered as a flexible structure, because of a quite large length-to-breadth ratio and its geometrical flexibility. The main object of this study is to develop an accurate and convenient method on the hydroelastic response analysis of very large offshore structures on the real sea states. The numerical approach for the hydorelastic responses is based on the combination of the three dimensional source distribution methods, the dynamic response analysis method and the spectral analysis method. A model is considered as many rigid bodies connected elastic beam elements. The calculated results shaw good agreement with the experimental and calculated ones by Ohta.

낮은 심도의 연약지반에 대한 비선형 지진응답해석 (Nonlinear Seismic Response Analysis for Shallow Soft Soil Deposits)

  • 박홍근;김동관;이경구;김동수
    • 한국지진공학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-12
    • /
    • 2010
  • 본 연구에서는 얕은 연약지반에서 구조물-지반 상호작용의 영향을 받는 구조물의 비탄성거동을 정확히 나타낼 수 있는 유한요소해석 방법을 연구하였다. 이를 위하여, 국내의 지반특성을 반영한 얕은 연약지반과 단자유도 구조물로 2차원 유한요소모델을 구성하고, 다양한 지진파와 지반에 대해 OpenSees 해석프로그램을 이용한 비선형 시간이력해석을 수행하였다. 연약지반의 비선형거동을 반영하기 위하여 일반적으로 흔히 사용되는 등가선형 주파수영역 해석 결과와 비선형 시간이력 유한요소해석 결과의 차이를 검토하였다. 그 비교결과는 등가선형강성을 사용하고 지반-구조물 상호작용을 고려하지 않는 주파수영역해석은 단주기영역의 구조물의 응답스펙트럼을 과대평가할 수 있음을 보여주었다. 응답스펙트럼에 대한 지반-구조물 상호작용의 영향은 기초크기와 구조물의 질량의 변화와 큰 관계 없이 일정하게 나타났다.

감도해석법에 의한 구조물의 결합부 강성 산출에 관한 연구 (A Study on the Identification of the joint's Stiffness of a Stucture by Sensitive Analysis Method)

  • 박석주;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권5호
    • /
    • pp.60-66
    • /
    • 1992
  • In most cases a structure consists of the assembly of some substructures, we assemble them with various joints, and the structure is fixed to a foundation through mounts. In case of the structure with rigid joints like welding, the Finite Element Mothod could be easily used to analyize the structure's characteristics, but in case of the structure with elastic joints like bolts or rivets, it might be difficult to analyize it by taking account of joint's rigidities, with the conventional method. This paper proposes the method to identify the joint rigidities by the Sensitive Analysis Method and the Optimization Techniques. And the proposed method applied to identify the rigidities of 4 bolts to combine 2 plates(500mm long, 100mm wide, 3.15mm thich). The analized results were well coincident with the experimental results. To confirm the reliability 0 the rigidities identified, another trial was done for the stucture to combine other 2 plates with same joints. The results were good too. This paper is proposin the identifying method of the joint rigidity of a structure, and it could be used for the data base of the joint rigidity and for the guidance to select joint stiffness.

  • PDF

Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow

  • Park, Sung-Woo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • 제41권4호
    • /
    • pp.559-573
    • /
    • 2012
  • An adaptive modeling and simulation technique is introduced for the effective and reliable fluid-structure interaction analysis using MSC/Dytran for large-scale complex pressurized liquid containment. The proposed method is composed of a series of the global rigid sloshing analysis and the locally detailed fluid-structure analysis. The critical time at which the system exhibits the severe liquid sloshing response is sought through the former analysis, while the fluid-structure interaction in the local region of interest at the critical time is analyzed by the latter analysis. Differing from the global coarse model, the local fine model considers not only the complex geometry and flexibility of structure but the effect of internal pressure. The locally detailed FSI problem is solved in terms of multi-material volume fractions and the flow and pressure fields obtained by the global analysis at the critical time are specified as the initial conditions. An in-house program for mapping the global analysis results onto the fine-scale local FSI model is developed. The validity and effectiveness of the proposed method are verified through an illustrative numerical experiment.