• Title/Summary/Keyword: structure analysis method

Search Result 9,201, Processing Time 0.044 seconds

A Study of seismic analysis method of urban rail transit's underground concrete structure (도시철도 지중 콘크리트 구조물의 내진해석법 적용에 관한 연구)

  • Lee, Hee-Young;Lee, Dong-Ho;Kim, Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1159-1164
    • /
    • 2005
  • Seismic analysis methods in use on ground structure are equivalentstatic analysis, response-displacement method and dynamic analysis etc. Equivalentstatic analysis does not considerdynamic effect, and dynamic analysis process is very complex. then 'Urbanrail transit earthquake-resistance design standard (2005.06)' is persuading that analyze by response displacement method that consider enough dynamic effect of ground structure statically. But, It is very complex and difficult to apply response-displacement method in the field. So, modified equivalentstatic analysis or pseudo static analysis that is easy to apply in the field and have rationality of design is practically used. In this study, I try to prescribe the applicable scale of structure and static analysis that have calculative effectiveness about response-displacement method by comparing and analyzing the result of each analysis method according to the scale of urban rail transit' box type concrete structure and by performing seismic analysis that apply modified equivalentstatic analysis, pseudo static analysis and response-displacement method changing the kind of ground, depth of bedrock, size of structure.

  • PDF

Indeterminate Truss Structure Analysis using Topological Load Redistribution Method (위상학적 하중 재분배 방법을 이용한 부정정 트러스 구조 해석)

  • Choi, Won;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.59-68
    • /
    • 2015
  • Traditional structure analysis method is based on numerical matrix analysis to use the geometries consisting of the structure. The characteristics require a lot of computer memories and computational time. To avoid these weaknesses, new approach to analyze truss structure was suggested by adopting topological load redistribution method. The axial forces to be not structurely analyzed yet against outside loads were redistributed by using nodal equation of equilibrium randomly at each node without constructing global matrix. However, this method could not calculate the axial forces if structure is statically indeterminate due to degree of many indeterminacies. Therefore, to apply the method suggested in this research, all redundancies of truss structure were replaced by unit loads. Each unit load could make the deformation of a whole structure, and a superposition method was finally adopted to solve the simultaneous equations. The axial forces and deflections agreed with the result of commercial software within the relative error of 1 %, whereas in the case that the axial forces are relatively very smaller than others, the relative errors were increased to 2 %. However, as the values were small enough not to be considered, it was practically useful as a structural analysis model. This model will be used for structural analysis of truss type of large structure such as agricultural farming facility.

Static Analysis of Three Dimensional Solid Structure by Finite Element-Transfer Stiffness Coefficent Method Introducing Hexahedral Element (육면체 요소를 도입한 유한요소-전달강성계수법에 의한 3차원 고체 구조물의 정적 해석)

  • Choi, Myung-Soo;Moon, Deok-Hong
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • The authors suggest the algorithm for the static analysis of a three dimensional solid structure by using the finite element-transfer stiffness coefficient method (FE-TSCM) and the hexahedral element of the finite element method (FEM). MATLAB codes were made by both FE-TSCM and FEM for the static analysis of three dimensional solid structure. They were applied to the static analyses of a very thick plate structure and a three dimensional solid structure. In this paper, as we compare the results of FE-TSCM with those of FEM, we confirm that FE-TSCM introducing the hexahedral element for the static analysis of a three dimensional solid structure is very effective from the viewpoint of the computational accuracy, speed, and storage.

Extracting Logical Structure from Web Documents (웹 문서로부터 논리적 구조 추출)

  • Lee Min-Hyung;Lee Kyong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.10
    • /
    • pp.1354-1369
    • /
    • 2004
  • This paper presents a logical structure analysis method which transforms Web documents into XML ones. The proposed method consists of three phases: visual grouping, element identification, and logical grouping. To produce a logical structure more accurately, the proposed method defines a document model that is able to describe logical structure information of topic-specific document class. Since the proposed method is based on a visual structure from the visual grouping phase as well as a document model that describes logical structure information of a document type, it supports sophisticated structure analysis. Experimental results with HTML documents from the Web show that the method has performed logical structure analysis successfully compared with previous works. Particularly, the method generates XML documents as the result of structure analysis, so that it enhances the reusability of documents.

  • PDF

A Study on the Analysis Algorithm of Time Historical Response of Straight-line Structure by the Transfer Stiffness Coefficient Method (전달강성계수법에 의한 직선형 구조물의 시간 이력응답 해석알고리즘에 관한 연구)

  • Moon, D.H.;Kang, H.S.;Choi, M.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.74-79
    • /
    • 1999
  • This paper describes formulation for algorithm of time historical response analysis of vibration for straight-line structure. This method is derived from a combination of the transfer stiffness coefficient method and the Newmark method. And this present method improves the computational accuracy of the transient vibration response analysis remarkably owing to several advantages of the transfer stiffness coefficient method. We regarded the structure as a lumped mass system here. The analysis algorithm for the time historical response was formulated for the straight-line structure containing crooked, tree type system. The validity of the present method compared with the transfer matrix method and the Finite Element Method for transient vibration analysis is demonstrated through the numerical computations.

  • PDF

A study on applying multivariate statistical method for making casual structure in management information (경영정보의 인과구조 구축을 위한 다변량통계기법 적용에 관한 연구)

  • 조성훈;김태성
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.117-120
    • /
    • 1996
  • The objective of this study is to suggest modified Covariance Structure Analysis that combine with existing Multivariate Statistical Method which is used Casual Analysis Method in Management Information. For this purpose, we'll consider special feature and limitation about Correlation Analysis, Regression Analysis, Path Analysis and connect Covariance Structure Analysis with Statistical Factor Analysis so that theoretical casual model compare with variables structure in collecting data. A example is also presented to show the practical applicability of this approach.

  • PDF

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

A Vibration Mode Analysis of Resilient Mounting System and Foundation Structure of Acoustic Enclosure using Finite Element Method (유한요소법을 이용한 음향차폐장치용 탄성마운트 시스템 및 받침대의 진동모드 해석)

  • 정우진;배수룡;함일배
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.493-501
    • /
    • 1999
  • The vibration modes of resilient mounting system and foundation structure which support diesel engine/generator set and acoustic enclosure walls play an important role in the vibration transmission process. So, it is necessary to perform vibration mode analysis of resilient mounting system and foundation structure. For some reasons, if the vibration modal analysis of resilient mounting system and foundation structure of acoustic enclosure could be simultaneously done by finite element method, it would be very efficient approach. In this paper, vibration modal analysis method using finite element method for multi stage mounting system having n d.o.f model was proposed. Vibration analysis of single and double stage resilient mounting system was performed to verify the validity of the proposed method. Also frequency response results were compared in case of rigid foundation model and finite element foundation model which was compared with experimental modal analysis results.

  • PDF

FLUID-STRUCTURE INTERACTION ANALYSIS FOR HIGH ANGLE OF ATTACK MANEUVER MISSILE (고받음각에서 기동하는 미사일의 공력-구조 연계 해석)

  • Noh, K.H.;Park, M.Y.;Park, S.H.;Lee, J.W.;Byun, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.111-114
    • /
    • 2007
  • Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM) are used to perform aerodynamics analysis and structure analysis. For the fluid-structure interaction analysis, each technology should be considered as well. The process of aerodynamics-structure coupled analysis can be applied to various integrated analyses from many research fields. In this study, the aerodynamics-structure coupled analysis is performed for the missile at high angle of attack condition through the use of Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM). For this purpose, the aerodynamics-structure coupled analyses procedure for the missile are established. The results of the integrated analysis are compared with rigid geometry of the missile and the effect of the deformation will be addressed.

  • PDF

Time Historical Response Analysis of Tree Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 분기형 구조물의 시긴이력응답해석)

  • 문덕홍;강현석;최명수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.426-431
    • /
    • 1998
  • This, paper describes formulation for time historical response analysis of vibration for tree structure. This method is derived from a combination of the transfer stiffness coefficient method and the Newmark-.betha. method. And This present method improves the computational accuracy of the transient vibration response analysis remarkably owing to several advantages of the transfer stiffness coefficient method. We regarded the structure as a lumped mass system here. The analysis algorithm for the time historical response was formulated for the tree structure. The validity of the present method compared with the transfer matrix method and the FEM(Finite Element Method) for transient vibration analysis is demonstrated through the numerical computations.

  • PDF