• Title/Summary/Keyword: structure/fluid interaction

Search Result 785, Processing Time 0.033 seconds

A Study on the Architectural Application of Biological Patterns (생물학적 패턴의 건축적 적용에 관한 연구)

  • Kim, Won Gaff
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.2
    • /
    • pp.35-45
    • /
    • 2012
  • The development of digital media made the change of architectural paradigm from tectonic to the surface and pattern. This means the transition to the new kind of materiality and the resurrection of ornament. This study started as an aim to apply biological pattern to architectural design from the new perception of pattern. Architectural patterns in the early era appeared as ladders, steps, chains, trees, vortices. But since 21st century, we can find patterns in nature like atoms and molecular structures, fluid forms of dynamics and new geometrical pattern like fractal and first of all biological patterns like viruses and micro-organisms, Voronoi cells, DNA structure, rhizomes and various hybrids and permutations of these. Pattern became one of the most important elements and themes of contemporary architecture through the change of materiality and resurrection of ornament with the new perception of surface in architecture. One of the patterns that give new creative availability to the architectural design is biological pattern which is self-organized as an optimum form through interaction with environment. Biological patterns emerge mostly as self-replicating patterns through morphogenesis, certain geometrical patterns(in particular triangles, pentagons, hexagons and spirals). The architectural application methods of biological patterns are direct figural pattern of organism, circle pattern, polygon pattern, energy-material control pattern, differentiation pattern, parametric pattern, growth principle pattern, evolutionary ecologic pattern. These patterns can be utilized as practical architectural patterns through the use of computer programs as morphogenetic programs like L-system, MoSS program and genetic algorithm programs like Grasshoper, Generative Components with the help of computing technology like mapping and scripting.

  • PDF

A comparison of the forces on dome and prism for straight and tornadic wind using CFD model

  • Yousef, Majdi A.A.;Selvam, Panneer R.;Prakash, Jai
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.369-382
    • /
    • 2018
  • Tornadoes are vertical swirling air formed because of the existence of layers of air with contrasting features of temperature, wind flow, moisture, and density. Tornadoes induce completely different wind forces than a straight-line (SL) wind. A suitably designed building for an SL wind may fail when exposed to a tornado-wind of the same wind speed. It is necessary to design buildings that are more resistant to tornadoes. In tornado-damaged areas, dome buildings seem to have less damage. As a dome structure is naturally wind resistant, domes have been used in back yards, as single family homes, as in-law quarters, man caves, game rooms, storm shelters, etc. However, little attention has been paid to the tornadic wind interactions with dome buildings. In this work, the tornado forces on a dome are computed using Computational Fluid Dynamics (CFD) for tornadic and SL wind. Then, the interaction of a tornado with a dome and a prism building are compared and analyzed. This work describes the results of the tornado wind effect on dome and prism buildings. The conclusions drawn from this study are illustrated in visualizations. The tornado force coefficients on a dome building are larger than SL wind forces, about 120% more in x- and y-directions and 280% more in z-direction. The tornado maximum pressure coefficients are also higher than SL wind by 150%. The tornado force coefficients on the prism are larger than the forces on the dome, about 100% more in x- and y-directions, and about 180% more in z-direction. The tornado maximum pressure coefficients on prism also are greater those on dome by 150% more. Hence, a dome building has less tornadic load than a prism because of its aerodynamic shape.

Experimental Validation of Ornithopter Aerodynamic Model in Low Reynolds Number Regime (저 레이놀즈 수 영역에서 날갯짓 비행체 공력 모델의 실험적 검증)

  • Lee, Jun-Seong;Kim, Dae-Kwan;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.647-654
    • /
    • 2010
  • In this study, an efficient ornithopter aerodynamic model, which is applicable to ornithopter wing design considering fluid-structure interaction or ornithopter flight dynamics and control simulation, was proposed and experimentally validated through the wind tunnel experiments. Due to the ornithopter aerodynamics governed by unsteady low Reynolds number flow, an experimental device was specially designed and developed. A part of the experimental device, 2-axis loadcell, was situated in the non-inertial frame; the dynamic calibration method was established to compensate the inertial load for pure aerodynamic load measurements. The characteristics of proposed aerodynamic model were compared with the experimental data in terms of mean and root-mean-square values of lift and drag coefficients with respect to the flow speed, flapping frequency, and fixed angle of attack.

A Fundamental Study on the Vertical-Axis Wind Turbine for Fishing Boat using Numerical Analysis (수치해석을 이용한 어선용 수직축 풍력터빈의 기초연구)

  • Jeong, Kwang-Leol;Lee, Young-Gill;Ha, Yoon-Jin;Kang, Bong Han;Kang, Dae-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.365-372
    • /
    • 2013
  • In this study, the flow characteristics and structural safety of a 500W class vertical-axis wind turbines(VAWT) for a fishing boat are investigated by numerical simulations. Guide vanes to increase the performance of the VAWT are investigated. And the best guide vane in the numerical simulations is applied to the VAWT. Also, modal analyses are performed to find out the natural frequencies of the VAWT, and the resonance safety of the VAWT is evaluated. The structural analysis of the VAWT is carried out by one-way FSI(Fluid Structure Interaction). And the results are used for the evaluation of structural safety according to IEC 61400-1 code. Finally, the possibility of the installation of the VAWT on the wheelhouse of a 9.77ton class fishing boat is checked. The results of the present research could be used as one of the fundamental data to design a VAWT for a fishing boat.

Numerical Analysis on a Hydrogen Diaphragm Compressor with Various Oil Distribution Holes Pattern for Hydrogen Compressor (수소용 다이어프램 압축기의 오일 분배 홀 패턴에 따른 수치해석)

  • Park, Hyun-Woo;Shin, Young-Il;Kim, Gyu-Bo;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.87-94
    • /
    • 2009
  • There are several types of compressors which are appropriate for hydrogen gas station. Diaphragm type of compressor is the one of them and it satisfies the requirements for that purpose in terms of maintaining gas purity and making high pressure over 700 bar. The objective of this study is to find an optimal design of oil distribution hole configuration. The number of holes is changed maintaining total cross-sectional area of holes. Five cases(1 hole, 4, 8,16 and 24 holes) were studied through Fluid Structure Interaction(FSI) analysis method. Gas and oil pressure, the deflection and stress of the diaphragm were analysed during compression and suction process respectively. There is no specific difference among the cases during compression. An additional deflection due to the existence of hole was found during suction for all case. But the highest deflection and stress were found in the 1 hole case. It was seen that 60% decrease of stress in magnitude in 24 hole case compare to the 1 hole case.

Supersonic Multi-species Jet Interactions of Hit-to-Kill Interceptor with High Temperature Effect (고온효과를 고려한 직격 요격체 다화학종 초음속 제트 간섭)

  • Baek, Chung;Lee, Seungsoo;Huh, Jinbum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • In this study, computational analyses are carried out to investigate the interference flows and the aerodynamic characteristics of a hit-to-kill intercepter due to lateral jets at medium altitude. In addition, the analyses are performed for air and multi-species gas used in the side jet. The results indicate that the position of the barrel shock are shifted upstream and the structure of the shock wave are changed for the multi-species jet when compared to the air jet. As a result, the high pressure region with multi-species jet moves forward and the pitching moment is higher under the same flow condition. Moreover, the inclusion of high temperature effects makes drastic changes in pressure distribution. The jet width is much bigger, and the jet diffuses over wider range in medium altitude than in low altitude, because of the low density of the freestream.

Dynamic PIV Measurements of Wake behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 Dynamic PIV 속도장 측정)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.134-137
    • /
    • 2007
  • The temporal evolution of wake behind a circular cylinder oscillating rotationally with a relatively high forcing frequency has been investigated experimentally using a dynamic PIV technique. Experiments were carried out with varying the frequency ratio $F_R\;(=f_f/f_n)$ in the range from 0.0 (stationary) to 1.6 at oscillation amplitude of ${\theta}_A=30^{\circ}$ and Reynolds number of $Re=4.14{\times}10^3$. Depending on the forcing condition ($F_R$), the flow was divided into three regimes; non-lock-on ($F_R=0.4$), transition ($F_R=0.8$, 1.6) and lock-on regimes ($F_R=1.0$) with markedly different flow structure in the near-wake region behind the cylinder. When the frequency ratio was less than 1.0 ($F_R{\le}1.0$), the rotational oscillatory motion of the cylinder decreased the length of the vortex formation region and enhanced the mutual interaction between large-scale vortices across the wake centerline. The entrainment of ambient fluid seemed to play an important role in controlling the near-wake flow and shear-layer instability. However, the flow characteristics changed markedly beyond the lock-on flow regime ($F_R=1.0$) due to high-frequency forcing. At $F_R=1.6$, the mutual interactions between the vortices shed from both sides of the cylinder were not so strong. Thereby, the flow entrainment and momentum transfer into the wake center region were reduced. In addition, the size of the large-scale vortices decreased since the lateral extent of the wake was suppressed.

  • PDF

Structural Characteristics Evaluation of the Injection Spiral Blade Used in Small Wind Turbines under Operating Conditions (운전하중 조건에서 소형 풍력 발전기용 사출 나선형 블레이드 구조특성 평가)

  • Gil, Young-Uk;Jo, Young-Kwan;Ji, Ho-Seong;Yang, Hyoung-Keun;Baek, Joon-Ho;Je, Duk-Geun;Jeong, Ho-Seung;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.38-46
    • /
    • 2020
  • The purpose is to evaluate the structural characteristics of 750 mm diameter injection spiral blades under various operating conditions. A fiber-glass reinforced polypropylene material was employed to the injection blades, and mechanical tests on two kinds of glass-reinforced polypropylene were performed to evaluate the mechanical properties and to select a suitable candidate material. Also, three kinds of spiral blade geometries were studied to observe the influence of fixing rods between blades. For this, structural analyses were conducted to understand the role of fixing rods under a range of rotating speed. In addition, modal analysis was performed to confirm the resonance in the operating speed range. One-way fluid-structure interaction (FSI) analysis was carried out to know its mechanical integrity under dangerous wind speed conditions. Through this work, the structural characteristics of the proposed spiral blade geometries were studied under various operating conditions, and the requirements of mechanical properties of blades were determined.

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

Dynamic analysis of wind turbine wake (풍력 발전 터빈 후류의 동적 분석)

  • Um, Young Han;Kim, Yun Gu;Park, Sung Goon
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.59-65
    • /
    • 2020
  • Vertical axis wind energy systems including 3 and 4 blades are numerically investigated in a two-dimensional (2D) computational domain. The power coefficient (Cp) is adopted to measure the efficiency of the system and the effect of the rotating velocity on the power coefficient is analyzed for the two different systems. The rotating velocity varies from 30 rad/s to 90 rad/s, which corresponds to the tip speed ratio (T.S.R) of 0.5 to 1.5. The torque exerted on the blades is mainly determined by the aerodynamic force in the x-direction and maximized when the blade is positioned at around θ = 186°. The efficiency of the 4-blade system is higher than that of the 3-blade system within the tip speed ratio range between 0.5 and 0.67, besides where the 3-blade system shows a better performance. For the 3-blade system, the maximum efficiency is reached to 0.082 at the tip speed ratio of 1.083. The maximum efficiency of the 4-blade system is 0.071 at T.S.R. = 0.92. The velocity fields in the x-direction, pressure fields, and the vorticity magnitude are analyzed in detail for the optimal cases of the 3- and 4-blades systems, respectively.