• 제목/요약/키워드: structural strength assessment

검색결과 360건 처리시간 0.021초

사용성 평가를 위한 프리스트레스트 콘크리트 일방향 슬래브의 처짐 변수 해석 (A Parametric Study of Deflection Analysis of the Prestressed Concrete One-Way Slab for Serviceability Assessment)

  • 박하은;김민숙;이영학
    • 한국전산구조공학회논문집
    • /
    • 제27권6호
    • /
    • pp.525-532
    • /
    • 2014
  • 본 연구에서는 프리스트레스트 콘크리트 일방향 슬래브의 사용성 평가를 위한 처짐을 분석하기 위하여 유한요소법에 기반한 해석적 연구를 수행하였다. 유한요소 상용 프로그램을 이용한 해석결과와 실험결과를 비교하여 모델링의 타당성을 검증하였으며, 비교적 유사한 결과를 나타내었다. 또한, 콘크리트 압축강도, 편심 거리, 활하중, 그리고 긴장재의 배치형태에 따른 처짐을 분석하여 수계산 결과와 비교하였고, 회귀분석을 통해 변수들과 처짐 사이의 상관관계를 확인하였다. 그 결과, 콘크리트 압축강도가 클수록, 편심 거리가 클수록, 활하중이 작을수록 처짐이 감소하는 것을 확인하였으며, 직선형태의 처짐이 가장 작고 절곡형태의 처짐이 가장 큰 것을 확인하였다. 또한 회귀분석을 통해 콘크리트 압축강도와 편심 거리가 솟음값에 미치는 영향을 분석하였다.

멤브레인형 LNG선박의 리퀴드 돔 체어 구조개발 (On the New Design of Liquid Dome Chair in Membrane Type LNG Carrier)

  • 김정환;김유일
    • 대한조선학회논문집
    • /
    • 제54권5호
    • /
    • pp.361-367
    • /
    • 2017
  • A membrane type LNG cargo tank is equipped with a pump tower and a liquid dome for loading and unloading of LNG. However, the membrane running continuously on the tank wall to prevent leakage of LNG is interrupted by the liquid dome, hence care should be taken in the design of liquid dome and its substructures. In case of GTT NO96 membrane type cargo containment system, chair structure is arranged along the periphery of the liquid dome targeting to support the membrane which is exposed to the both hull girder and thermal load. This paper proposes a new and simple chair structure, which outperforms traditional design from productivity point of view maintaining same level of structural safety. Strength assessment on the new design was performed to guarantee the structural safety of the new design, which includes strength, fatigue and crack propagation analysis.

Probabilistic seismic performance evaluation of non-seismic RC frame buildings

  • Maniyar, M.M.;Khare, R.K.;Dhakal, R.P.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.725-745
    • /
    • 2009
  • In this paper, probabilistic seismic performance assessment of a typical non-seismic RC frame building representative of a large inventory of existing buildings in developing countries is conducted. Nonlinear time-history analyses of the sample building are performed with 20 large-magnitude medium distance ground motions scaled to different levels of intensity represented by peak ground acceleration and 5% damped elastic spectral acceleration at the first mode period of the building. The hysteretic model used in the analyses accommodates stiffness degradation, ductility-based strength decay, hysteretic energy-based strength decay and pinching due to gap opening and closing. The maximum inter story drift ratios obtained from the time-history analyses are plotted against the ground motion intensities. A method is defined for obtaining the yielding and collapse capacity of the analyzed structure using these curves. The fragility curves for yielding and collapse damage levels are developed by statistically interpreting the results of the time-history analyses. Hazard-survival curves are generated by changing the horizontal axis of the fragility curves from ground motion intensities to their annual probability of exceedance using the log-log linear ground motion hazard model. The results express at a glance the probabilities of yielding and collapse against various levels of ground motion intensities.

FCM과 FSM공법에 의한 강-콘크리트 복합사장교의 신뢰성에 기초한 시공간 구조안전도평가 (Reliability-Based Assessment of Structural Safety of Steel-Concrete Hybrid Cable-Stayed Bridge Erected by the FCM and FSM during Construction)

  • 윤정현;조효남
    • 한국강구조학회 논문집
    • /
    • 제19권5호
    • /
    • pp.515-526
    • /
    • 2007
  • 본 연구에서는 시공간의 구조안전도 확보와 교량붕괴를 방지하기 위해 FCM과 FSM공법으로 가설되는 강-콘크리트 복합사장교의 안전도평가 모형을 제안하였다. 구조물의 저항과 하중효과에 내제된 각종 불확실성을 합리적으로 고려하는 구조신뢰성이론에 의해 강합성거더와 콘크리트거더가 연결된 강-콘크리트 복합사장교의 저항과 하중의 분포특성을 정의하고 가설중 영구구조물과 가설구조물의 강도한계상태방정식을 제안하였다. 케이블, 주탑, 거더, 강-콘크리트 접합부 및 가설벤트의 신뢰성해석을 위해 AFOSM 알고리즘과 MCS 기법을 사용하였다. 또한, 가설단계별 구조시스템에 따라 요소신뢰성해석을 수행하였다. 제안된 평가모형의 타당성과 실용성을 검증하기 위하여 제시된 방법을 실제 교량에 적용하였다. 유사한 교량의 안전도 관리를 위한 중점 항목을 정의하기 위해서 주요 인자에 대한 민감도 분석이 수행되었다. 본 연구를 통해, 제안된 모형은 FCM과 FSM으로 가설되는 강-콘크리트 복합사장교의 시공간 안전도 평가를 위한 합리적이고 실용적인 방법으로 적용될 수 있을 것으로 판단되었다.

Safety factor calibration for bridge concrete girders

  • Silva, Rita C.;Cremona, Christian
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.163-182
    • /
    • 2014
  • Safety factors proposed in codes CEB, B.A.E.L 91 and EUROCODE 1 cover a great number of uncertainties; making them inadequate for the assessment of existing structures. Suitable safety factors are established using a probabilistic assessment, once real dimensions, materials strength and existing structures deterioration mechanisms are taken into account. This paper presents a calibration method for safety factors using a typical set of RC bridges in France. It considers the principal stages of corrosion provoked by $CO_2$ and $Cl^-$ penetration and threshold indexes (${\beta}_0$) for existing structures. Reliability indexes are determined by the FORM method in the calibration method.

Numerical formulation of P-I diagrams for blast damage prediction and safety assessment of RC panels

  • Mussa, Mohamed H.;Mutalib, Azrul A.;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.607-620
    • /
    • 2020
  • A numerical study is carried out to assess the dynamic response and damage level of one- and two-way reinforced concrete (RC) panels subjected to explosive loads by using finite element LS-DYNA software. The precision of the numerical models is validated with the previous experimental test. The calibrated models are used to conduct a series of parametric studies to evaluate the effects of panel wall dimensions, concrete strength, and steel reinforcement ratio on the blast-resistant capacity of the panel under various magnitudes of blast load. The results are used to develop pressure-impulse (P-I) diagrams corresponding to the damage levels defined according to UFC-3-340-02 manual. Empirical equations are proposed to easily construct the P-I diagrams of RC panels that can be efficiently used to assess its safety level against blast loads.

EVALUATION OF SEISMIC SHEAR CAPACITY OF PRESTRESSED CONCRETE CONTAINMENT VESSELS WITH FIBER REINFORCEMENT

  • CHOUN, YOUNG-SUN;PARK, JUNHEE
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.756-765
    • /
    • 2015
  • Background: Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. Methods: The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. Results: The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ~40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. Conclusion: The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

Post-seismic assessment of existing constructions: evaluation of the shakemaps for identifying exclusion zones in Emilia

  • Braga, Franco;Gigliotti, Rosario;Monti, Giorgio;Morelli, Francesco;Nuti, Camillo;Salvatore, Walter;Vanzi, Ivo
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.37-56
    • /
    • 2015
  • The Emilia, May-July 2012, earthquake has dramatically highlighted the only the hazards facing the people in insufficiently secured workplaces, but also the socio-economic consequences of interruption of production activities. After the event, in order to guarantee suitable safety levels, the Italian government asked for a generalized seismic retrofit of buildingsaffected by the earthquake under consideration. Considering that Emilia is one of the most industrialized Italian region, the number of the industrial buildings to be verified could however lead to not acceptable resumption of production time. So, with the aim to speed up the recovery, were leaved out from this request the buildings which had undergone a strong enoughshaking without any damage. In practice, the earthquakes were being used as a "test" to evaluate the seismic structural strength. Besides, the Italian government provision specifies also the zones, within which buildings that escaped evident damage are exempt from obligatory checks, and termed "exclusion zones", shall be individuated using the data provided by the Italian National Institute of Geophysics and Volcanology in the form of so-called "shakemaps". Obviously, the precision of such data greatly influences the determination of the exclusions zones and so all the economic issues related to them. Starting from these considerations, the present paper describes an evaluation of the reliability of the procedure of shakemap generation with specific regard to the seismic events that struck the Emilia region on May 20 and 29, 2012.

탄소복합재 부품 파티션패널의 구조 강성/강도 신뢰성 평가에 관한 연구 (Study on Structural Reliability Assessment of a Partition Panel Made of a CFRP(Carbon Fiber Reinforced Plastic))

  • 이재진;문지훈;윤원호;강다경;안민수;노형진;강지헌;이재욱
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.68-74
    • /
    • 2019
  • In the case of a partition panel for a vehicle, it is used as a vehicle chassis component that serves to distinguish the indoor and outdoor spaces of a vehicle and is mounted on a backrest portion of the vehicle's back seat to ensure the convenience of passengers by connecting the floor and the side of the vehicle. Because it is a relatively large-sized plate material among automobile chassis parts except the moving parts and non-ferrous materials can be applied, it is considered as a part having a large light-weight effect. However, the partition panel is one of the vehicle parts that must satisfy the light-weight effect as well as various structural reliability, such as torsional rigidity, vibration, and impact characteristics, for securing the running stability of the vehicle when driving at the same time. So, In this study, the possibility of replacing the aluminum partition panel as CFRP(Carbon Fiber Reinforced Plastic) partition panel is evaluated through comparing the two partition panels by using the structural reliability(stiffness/strength analysis), vibration analysis, impact analysis.

Symptom-based reliability analyses and performance assessment of corroded reinforced concrete structures

  • Chen, Hua-Peng;Xiao, Nan
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1183-1200
    • /
    • 2015
  • Reinforcement corrosion can cause serious safety deterioration to aging concrete structures exposed in aggressive environments. This paper presents an approach for reliability analyses of deteriorating reinforced concrete structures affected by reinforcement corrosion on the basis of the representative symptoms identified during the deterioration process. The concrete cracking growth and rebar bond strength evolution due to reinforcement corrosion are chosen as key symptoms for the performance deterioration of concrete structures. The crack width at concrete cover surface largely depends on the corrosion penetration of rebar due to the expansive rust layer at the bond interface generated by reinforcement corrosion. The bond strength of rebar in the concrete correlates well with concrete crack width and decays steadily with crack width growth. The estimates of cracking development and bond strength deterioration are examined by experimental data available from various sources, and then matched with symptom-based lifetime Weibull model. The symptom reliability and remaining useful life are predicted from the predictive lifetime Weibull model for deteriorating concrete structures. Finally, a numerical example is provided to demonstrate the applicability of the proposed approach for forecasting the performance of concrete structures subject to reinforcement corrosion. The results show that the corrosion rate has significant impact on the reliability associated with serviceability and load bearing capacity of reinforced concrete structures during their service life.