• Title/Summary/Keyword: structural seismic response

Search Result 1,317, Processing Time 0.023 seconds

Seismic response of RC structures rehabilitated with SMA under near-field earthquakes

  • Shiravand, M.R.;Khorrami Nejad, A.;Bayanifar, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.497-507
    • /
    • 2017
  • During recent earthquakes, a significant number of concrete structures suffered extensive damage. Conventional reinforced concrete structures are designed for life-time safety that may see permanent inelastic deformation after severe earthquakes. Hence, there is a need to utilize adequate materials that have the ability to tolerate large deformation and get back to their original shape. Super-elastic shape memory alloy (SMA) is a smart material with unique properties, such as the ability to regain undeformed shape by unloading or heating. In this research, four different stories (three, five, seven and nine) of reinforced concrete (RC) buildings have been studied and subjected to near-field ground motions. For each building, two different types of reinforcement detailing are considered, including (1) conventional steel reinforcement (RC frame) and (2) steel-SMA reinforcement (SMA RC frame), with SMA bars being used at plastic zones of beams and steel bars in other regions. Nonlinear time history analyses have been performed by "SeismoStruct" finite element software. The results indicate that the application of SMA materials in plastic hinge regions of the beams lead to reduction of the residual displacement and consequently post-earthquake repairs. In general, it can be said that shape memory alloy materials reduce structural damage and retrofit costs.

Efficacy of pushover analysis methodologies: A critical evaluation

  • Dutta, Sekhar Chandra;Chakroborty, Suvonkar;Raychaudhuri, Anusrita
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.265-276
    • /
    • 2009
  • Various Pushover analysis methodologies have evolved as an easy as well as designers-friendly alternative of nonlinear dynamic analysis for estimation of the inelastic demands of structures under seismic loading for performance based design. In fact, the established nonlinear dynamic analysis to assess the same, demands considerable analytical and computational background and rigor as well as intuitive insight into inelastic behavior for judging suitability of the results and its interpretation and hence may not be used in design office for frequent practice. In this context, the simple and viable alternative of Pushover analysis methodologies can be accepted if its efficacy is thoroughly judged over all possible varieties of the problems. Though this burning issue has invited some research efforts in this direction, still a complete picture evolving very clear guidelines for use of these alternate methodologies require much more detailed studies, providing idea about how the accuracy is influenced due to various combinations of basic parameters regulating inelastic dynamic response of the structures. The limited study presented in the paper aims to achieve this end to the extent possible. The study intends to identify the range of applicability of the technique and compares the efficacy of various alternative Pushover analysis schemes to general class of problems. Thus, the paper may prove useful in judicial use of Pushover analysis methodologies for performance based design with reasonable accuracy and relative ease.

Hybrid Control with a Bang-Bang Type Controller (Bang-Bang 형태의 제어기를 갖는 복합제어)

  • 박규식;정형조;조상원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.193-200
    • /
    • 2003
  • This paper presents a hybrid (i.e., integrated passive-active) system for seismic response control of a cable-stayed bridge. Because multiple control devices are operating, a hybrid control system could alleviate some of the restrictions and limitations that exist when each system is acting alone. Lead rubber bearings are used as passive control devices to reduce the earthquake-induced forces in the bridge and hydraulic actuators are used as active control devices to further reduce the bridge responses, especially deck displacements. In the proposed hybrid control system, a linear quadratic Gaussian control algorithm is adopted as a primary controller. In addition, a secondary bang-bang type (i.e., on-off type) controller according to the responses of lead rubber bearings is considered to increase the controller robustness. Numerical simulation results show that control performances of the hybrid control system are superior to those of the passive control system and slightly better than those of the fully active control system. Furthermore, it is verified that the hybrid control system with a bang-bang type controller is more robust for stiffness perturbation than the active controller with μ-synthesis method and there are no signs of instability in the overall system whereas the active control system with linear quadratic Gaussian algorithm shows instabilities in the perturbed system. Therefore, the proposed hybrid protective system could effectively be used to seismically excited cable-stayed bridges.

  • PDF

ExperimPerformance Evaluation of Modified Sliding Mode Control Algorithm for Nonlinear Structures (비선형 구조물에 대한 수정 슬라이딩모드 제어알고리즘 성능 평가)

  • Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.147-155
    • /
    • 2007
  • In this study, the performance of the modified sliding mode control proposed in the previous study is evaluated for seismic response control of nonlinear hysteretic structures. Modified sliding mode control(MSMC) utilizes the target derivative of Lyapunov function in order to calculate control force, and its performance was evaluated only lot linear structures in the previous study. However, considering that most structures subject to strong earthquake show nonlinear hysteretic behivior, the results from the previous study have limitations in practical application. The results from numerical analyses of single degree of freedom systems and base isolated system, which were described using Bouc-Wen model, indicate that the proposed MSMC algorithm shows better control performance than the existing sliding mode controller.

Correction of Pseudo-Dynamic Test by Equivalent Energy Compensation (등가에너지 보상을 통한 유사동적 실험의 보정)

  • Kim, Nam Sik;Lee, Sang Soon;Chung, Woo Jung;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.77-85
    • /
    • 1992
  • The Pseudo-dynamic test is a new experimental technique for simulating the earthquake response of structures or structural components in the time domain. It is especially efficient for testing specimens that are too large, heavy or strong to be tested on a shaking table. But, in general, the responses obtained in the Pseudo-dynamic test can be distorted by the experimental errors inevitably during control and measurement procedures. The studies are to investigate the effects of the experimental errors on the Pseudo-dynamic responses and apply a correction method to the Pseudo-dynamic testing algorithm. It is shown that the corrected responses using the equivalent energy compensation method are in a good correlation with the theoretical ones. Thus, the corrected Pseudo-dynamic responses could be reliable for evaluating the seismic performance of structural systems.

  • PDF

Capacity design considerations for RC frame-wall structures

  • Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.391-410
    • /
    • 2010
  • There are several important considerations that need to be made in the capacity design of RC frame-wall structures. Capacity design forces will be affected by material overstrength, higher mode effects and secondary loadpaths associated with the 3-dimensional structural response. In this paper, the main issues are identified and different means of predicting capacity design forces are reviewed. In order to ensure that RC frame-wall structures perform well it is explained that the prediction of the peak shears and moments that develop in the walls is particularly important and unfortunately very challenging. Through examination of a number of case study structures it is shown that there are a number of serious limitations with capacity design procedures included in current codes. The basis and potential of alternative capacity design procedures available in the literature is reviewed, and a new simplified capacity design possibility is proposed. Comparison with the results of 200 NLTH analyses of frame-wall structures ranging from 4 to 20 storeys suggest that the new method is able to predict wall base shears and mid-height wall moments reliably. However, efforts are also made to highlight the uncertainty with capacity design procedures and emphasise the need for future research on the subject.

Performance Evaluation of Seismic Isolation using Ball Bearing (볼 베이링을 이용한 면진장치의 성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok;Lee, Young-Seok;Yeo, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.71-74
    • /
    • 2011
  • 최근 국제적으로 지진 발생 규모가 증대하고 있으며, 우리나라를 비롯한 많은 나라에서 구조물 및 주요 시설물에 대한 내진설계에 관심이 증대되고 있다. 지진방재는 건물자체의 안전성뿐만 아니라 내부설비 및 소장품에 대한 안전성까지 종합적으로 검토되어야 하며 이를 위한 대책이 필요한 실정이다. 본 연구의 주요목적은 예측 불가한 자연재해인 지진에 대해 일반적인 면진성능을 갖는 기초격리장치로서의 기능을 충실히 수행할 수 있는지를 확인하기 위하여 면진장치를 사용한 구조물의 면진효과를 검증하는 것이다. 또한 설계된 스프링의 탄성계수에 따른 실제 지진 시 응답의 차이를 알아보기 위하여 공진실험 및 진동대 실험을 실시하여 면진테이블 시스템의 면진성능을 평가하였다. 진동대 실험은 미국 "NEBS Requirements"에서 규정하는 요구응답스펙트럼에 상응하는 임의 지진파를 적용하였고 각각 x축과 z축 가진 후, x-y-z 축을 동시에 가진하여 수행하였다. 시험응답스펙트럼(Test Response Spectrum)은 요구응답스펙트럼(RRS)에 포락하도록 시험하여 최대가속도는 x축 방향 가진 시 90%의 감쇠효과가 나타났으며, 3축 방향 가진 시 x축 방향은 58%, y축 방향은 31%의 감쇠효과가 나타났다. 최대상대변위는 설계스트로크 140mm에 대하여 최대 85.54mm의 변위가 발생하여 안정적인 거동을 나타내었다. 본 연구에서 제안한 면진테이블 시스템은 중요 첨단장비 및 문화재 등의 전도 및 파괴를 방지하는 데 효과적일 것으로 판단된다.

  • PDF

Development of Modeling for Dynamic Response of EDF System (EDF 시스템의 동적 특성 연구를 위한 모델링 개발)

  • Han, Kyu Seung;Park, Sun Kyu;Lee, In Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.218-227
    • /
    • 2001
  • The purpose of this study was to estimate that the relations of weathering speed and shear strength of granite soil by tracing the weathering depth of granite soil from the very moment of its cutting. The results obtained this follows : This paper is about seismic performance of the EDF(Electricite De France) system, that is among various base isolator. A rational modeling of EDF system has been presented that used Nllink element. We get theoretical solutions of equation of motion of the system and compared with numerical solutions using a finite element program. The unification modeling is made by comparing with behavior using Newmark-${\beta}$ method when input earthquake acceleration data. Thus, a verified modeling will apply bridge structures or multi-degree of-freedom systems.

  • PDF

Numerical verification of a dual system's seismic response

  • Phocas, Marios C.;Sophocleous, Tonia
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.749-766
    • /
    • 2012
  • Structural control through integration of passive damping devices within the building structure has been increasingly implemented internationally in the last years and has proven to be a most promising strategy for earthquake safety. In the present paper an alternative configuration of an innovative energy dissipation mechanism that consists of slender tension only bracing members with closed loop and a hysteretic damper is investigated in its dynamic behavior. The implementation of the adaptable dual control system, ADCS, in frame structures enables a dual function of the component members, leading to two practically uncoupled systems, i.e., the primary frame, responsible for the normal vertical and horizontal forces and the closed bracing-damper mechanism, for the earthquake forces and the necessary energy dissipation. Three representative international earthquake motions of differing frequency contents, duration and peak ground acceleration have been considered for the numerical verification of the effectiveness and properties of the SDOF systems with the proposed ADCS-configuration. The control mechanism may result in significant energy dissipation, when the geometrical and mechanical properties, i.e., stiffness and yield force of the integrated damper, are predefined. An optimum damper ratio, DR, defined as the ratio of the stiffness to the yield force of the hysteretic damper, is proposed to be used along with the stiffness factor of the damper's- to the primary frame's stiffness, in order for the control mechanism to achieve high energy dissipation and at the same time to prevent any increase of the system's maximum base shear and relative displacements. The results are summarized in a preliminary design methodology for ADCS.

Numerical studies on the effects of the lateral boundary on soil-structure interaction in homogeneous soil foundations

  • Li, Z.N.;Li, Q.S.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.421-434
    • /
    • 2005
  • In this paper, the finite element method is applied to investigate the effect of the lateral boundary in homogenous soil on the seismic response of a superstructure. Some influencing factors are presented and discussed, and several parameters are identified to be important for conducting soil-structure interaction experiments on shaking tables. Numerical results show that the cross-section width L, thickness H, wave propagation velocity and lateral boundaries of soil layer have certain influences on the computational accuracy. The dimensionless parameter L/H is the most significant one among the influencing factors. In other words, a greater depth of soil layer near the foundation should be considered in shaking table tests as the thickness of the soil layer increases, which can be regarded as a linear relationship approximately. It is also found that the wave propagation velocity in soil layer affects the numerical accuracy and it is suggested to consider a greater depth of the soil layer as the wave propagation velocity increases. A numerical study on a soil-structure experimental model with a rubber ring surrounding the soil on a shaking table is also conducted. It is found the rubber ring has great effect on the soil-structure interaction experiments on shaking table. The experimental precision can be improved by reasonably choosing the elastic parameter and width of the rubber ring.