• Title/Summary/Keyword: structural seismic response

Search Result 1,317, Processing Time 0.026 seconds

Seismic progressive collapse assessment of 3-story RC moment resisting buildings with different levels of eccentricity in plan

  • Karimiyan, Somayyeh;Moghadam, Abdolreza S.;Vetr, Mohammad G.
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.277-296
    • /
    • 2013
  • Margin of safety against potential of progressive collapse is among important features of a structural system. Often eccentricity in plan of a building causes concentration of damage, thus adversely affects its progressive collapse safety margin. In this paper the progressive collapse of symmetric and asymmetric 3-story reinforced concrete ordinary moment resisting frame buildings subjected to the earthquake ground motions are studied. The asymmetric buildings have 5%, 15% and 25% mass eccentricity. The distribution of the damage and spread of the collapse is investigated using nonlinear time history analyses. Results show that potential of the progressive collapse at both stiff and flexible edges of the buildings increases with increase in the level of asymmetry in buildings. It is also demonstrated that "drift" as a more easily available global response parameter is a good measure of the potential of progressive collapse rather than much difficult-to-calculate local response parameter of "number of collapse plastic hinges".

Experimental Study on the Seismic Structural Responses Subjected to Different Earthquakes (지진특성에 따른 구조물의 지진응답실험)

  • 최인길;김형규;김민규;전영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.82-89
    • /
    • 2003
  • Near-field ground motions exhibit special characteristics that are different from ordinary far-field ground motions. In this study the shaking table tests were conducted to evaluate the effect of earthquake ground motions with different characteristics on the response of the structure. The ground motions used in this study were the scenario earthquake, design earthquake, and Chi-Chi earthquake measured in TCU052 station. These earthquakes have different frequency contents. The test results show that the frequency content of ground motion is very important to the response of structures. The floor responses of structure were greatly affected by the higher modal frequencies, as well as the fundamental frequency. The responses of third floor were significantly reduced due to the interaction between the structure and the base isolated mass installed at the third floor.

  • PDF

19th May 2011 Simav (Kütahya) earthquake and response of masonry Halil Aga Mosque

  • Ural, Ali
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.671-683
    • /
    • 2013
  • The May 19, 2011 an earthquake hit Simav (K$\ddot{u}$tahya) province in Turkey. Simav is a district of K$\ddot{u}$tahya located 255 km southwest from capital city of Turkey. According to Turkish General Directorate of Disaster Affairs (DAD), the magnitude of this moderate earthquake was 5.7. The major percent of the housing stock in the affected region was built in masonry. Many masonry dwellings, mosques and also minarets were heavily damaged due to this seismic activity. The Halil Aga Mosque and its minaret were also heavily damaged as a masonry structure around the earthquake region. In this paper, a site survey of masonry damages is presented and Response Spectrum Analysis of the Halil Aga Mosque is performed using the finite element method.

Lateral-torsional seismic behaviour of plan unsymmetric buildings

  • Tamizharasi, G.;Prasad, A. Meher;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.239-260
    • /
    • 2021
  • Torsional response of buildings is attributed to poor structural configurations in plan, which arises due to two factors - torsional eccentricity and torsional flexibility. Usually, building codes address effects due to the former. This study examines both of these effects. Buildings with torsional eccentricity (e.g., those with large eccentricity) and with torsional flexibility (those with torsional mode as a fundamental mode) demand large deformations of vertical elements resisting lateral loads, especially those along the building perimeter in plan. Lateral-torsional responses are studied of unsymmetrical buildings through elastic and inelastic analyses using idealised single-storey building models (with two degrees of freedom). Displacement demands on vertical elements distributed in plan are non-uniform and sensitive to characteristics of both structure and earthquake ground motion. Limits are proposed to mitigate lateral-torsional effects, which guides in proportioning vertical elements and restricts amplification of lateral displacement in them and to avoid torsional mode as the first mode. Nonlinear static and dynamic analyses of multi-storey buildings are used to validate the limits proposed.

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

Seismic damage detection of a reinforced concrete structure by finite element model updating

  • Yu, Eunjong;Chung, Lan
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.253-271
    • /
    • 2012
  • Finite element (FE) model updating is a useful tool for global damage detection technique, which identifies the damage of the structure using measured vibration data. This paper presents the application of a finite element model updating method to detect the damage of a small-scale reinforced concrete building structure using measured acceleration data from shaking table tests. An iterative FE model updating strategy using the least-squares solution based on sensitivity of frequency response functions and natural frequencies was provided. In addition, a side constraint to mitigate numerical difficulties associated with ill-conditioning was described. The test structure was subjected to six El Centro 1942 ground motion histories with different Peak Ground Accelerations (PGA) ranging from 0.06 g to 0.5 g, and analytical models corresponding to each stage of the shaking were obtained using the model updating method. Flexural stiffness values of the structural members were chosen as the updating parameters. In model updating at each stage of shaking, the initial values of the parameter were set to those obtained from the previous stage. Severity of damage at each stage of shaking was determined from the change of the updated stiffness values. Results indicated that larger reductions in stiffness values occurred at the slab members than at the wall members, and this was consistent with the observed damage pattern of the test structure.

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

Experimental assessment for friendly-environment functional Inorganic mixed rubber asphalt Seismic waterproof strengthening method (친환경 기능성 무기질계와 고무아스팔트를 혼합한 내진방수 보강공법에 대한 실험적 평가)

  • Baek, Jong-Myeong;Hwang, Young-Ho;Shon, Jung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1802-1808
    • /
    • 2008
  • Recent interest in the construction sector, rising about the environment and eco-friendly recycled material resources, and increase the development of method But despite these efforts, and the diverse functional and structural changes in the structure can not be an appropriate response to the functional waterproof structural changes in the structures and appropriate response Diversification does not waterproof and functional issues such as durability, and which are occurring due to the structure to secure stability and durability, never sees the conservative economic losses due to import constructability reinforcement situation. Therefore, this study applies to structure the existing waterproof method (hereinafter referred to as structures water-resistant methode), and to review recent issues of environmental pollution and resource waste, and taking on environmental issues, such as Revelation and functional Inorganic mixed in a way to leverage the manufacturing water-resistant material "Re Inorganic, functional and environmentally friendly high-viscosity mix asphalt waterproof rubber reinforcements, and taking conservative" for the characterization and performance assessment to the issues raised by the structure and whether the judge would respond.

  • PDF

Random Response Analysis of Base Isolated Nuclear Container System (기초분리된 원전 격납구조물의 무작위 반응해석)

  • 홍원기;전제성;유광호
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.145-150
    • /
    • 1994
  • Seismic isolation in ordinary buildings has been successively adapted to provide flexibility for the reduction of base shear forces and its concept is accepting wide agreement in lengthening the natural, period to lessen the spectral acceleration transmitted into the structure. However, one of difficulties in implementing the innovative concept to nuclear structures is due to more severe requirements in both understanding and predicting the characteristics of isolators and the behavior of cushioned structures, Stochastic analysis has been carried out to investigate the response of base isolated nuclear containers to the random earthquake ground motion.

  • PDF

Simple adaptive control of seismically excited structures with MR dampers

  • Amini, F.;Javanbakht, M.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.275-290
    • /
    • 2014
  • In this paper, Simple Adaptive Control (SAC) method is used to mitigate the detrimental effects of earthquakes on MR-damper equipped structures. Acceleration Feedback (AF) is utilized since measuring the acceleration response of structures is known to be reliable and inexpensive. The SAC is simple, fast and as an adaptive control scheme, is immune against the effects of plant and environmental uncertainties. In the present study, in order to translate the desired control force into an applicable MR damper command voltage, a neural network inverse model is trained, validated and used through the simulations. The effectiveness of the proposed AF-based SAC control system is compared with optimal H2/LQG controllers through numerical investigation of a three-story model building. The results indicate that the SAC controller is substantially effective and reliable in both undamaged and damaged structural states, specifically in reducing acceleration responses of seismically excited buildings.