• Title/Summary/Keyword: structural safety evaluation system

Search Result 360, Processing Time 0.022 seconds

Development of Doubler Plate Design System for Ship Structure Subjected to In-plane Combined Loads and Lateral Pressure (면내조합하중과 횡압 하의 선박 이중판 설계시스템 구축)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.146-152
    • /
    • 2019
  • A design system was developed for the doubler plate of a ship structure simultaneously subjected to in-plane loads and lateral pressure based on general dimensions and those of a representative ship structure. An equivalent design equation that considers various structural design parameters was derived by introducing the equivalent plate thickness theory, and the design of the doubler plate reinforcement of the ship structure was developed. A hybrid structural design system was established for a doubler plate simultaneously subjected to in-plane loads and lateral pressure consisting of two modules: an optimized design module and a double plate strength & design review module. The practical application of this design system was illustrated to show its usability. It was found that the design safety of the doubler plate was ensured, and this system could be used as an initial design guide to review the double plate reinforcement for a dent or corrosion of the ship plate members. Using the developed design system would make it possible to obtain a more reasonable doubler plate structure that considers the rational reinforcement of plate members of ship structures. In addition, a more reliable structural analysis using a strength evaluation process can be performed to verify the efficiency of the optimum structural design for the doubler plate structure.

Numerical investigations on stability evaluation of a jointed rock slope during excavation using an optimized DDARF method

  • Li, Yong;Zhou, Hao;Dong, Zhenxing;Zhu, Weishen;Li, Shucai;Wang, Shugang
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.271-281
    • /
    • 2018
  • A jointed rock slope stability evaluation was simulated by a discontinuous deformation analysis numerical method to investigate the process and safety factors for different crack distributions and different overloading situations. An optimized method using Discontinuous Deformation Analysis for Rock Failure (DDARF) is presented to perform numerical investigations on the jointed rock slope stability evaluation of the Dagangshan hydropower station. During the pre-processing of establishing the numerical model, an integrated software system including AutoCAD, Screen Capture, and Excel is adopted to facilitate the implementation of the numerical model with random joint network. These optimizations during the pre-processing stage of DDARF can remarkably improve the simulation efficiency, making it possible for complex model calculation. In the numerical investigations on the jointed rock slope stability evaluations using the optimized DDARF, three calculation schemes have been taken into account in the numerical model: (I) no joint; (II) two sets of regular parallel joints; and (III) multiple sets of random joints. This model is capable of replicating the entire processes including crack initiation, propagation, formation of shear zones, and local failures, and thus is able to provide constructive suggestions to supporting schemes for the slope. Meanwhile, the overloading numerical simulations under the same three schemes have also been performed. Overloading safety factors of the three schemes are 5.68, 2.42 and 1.39, respectively, which are obtained by analyzing the displacement evolutions of key monitoring points during overloading.

Evaluation of Structural Safety of Linear Actuator for Flap Control of Aircraft (항공기 플랩 제어를 위한 선형 구동기의 구조 안전성 평가)

  • Kim, Dong-Hyeop;Kim, Sang-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.66-73
    • /
    • 2019
  • The objective of this study was to evaluate the structural safety of the basic design for the linear actuator for the flap control of aircrafts. The kinetic behavior of the linear actuator was determined using the multi-body dynamics (MBD) analysis, and the contact force was calculated to be used as input data for the structural analysis based on the finite element analysis. In the structural analysis, the thermal and static behaviors of the linear actuator satisfying the designed velocity were examined, and the structural safety of the linear actuator evaluated. Moreover, the dynamic behaviors of the key components of the linear actuator were investigated by the modal analysis. The actuation rod linearly moved with about 5 mm/s when the motor operated at 225 rpm and the maximum contact force of 32.83 N occurred between two driving gears. Meanwhile, the structural analysis revealed that the maximum thermal and static stresses were 1.57% and 78% of the yield strength of steel, respectively, and they were in a safe range of the structure. In addition, the linear actuator for the basic design is stable to the resonance by avoiding the natural frequencies of the components.

Structural Safety Evaluation for the Hydraulic Power Unit of Topside Module According to the Movement of Offshore Plant (해양구조물 움직임에 따른 Topside Module의 HPU에 대한 구조안전성 평가)

  • Ryu, Bo-Rim;Lee, Jin-Uk;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.723-731
    • /
    • 2020
  • The design of offshore plants should reflect the various requirements of the owner and the classification society. For a topside module mounted on an of shore structure, the design process is very demanding because of the large spatial constraints and the many requirements related to marine environmental conditions and safety such as the movement of the structure. In this study, the load acting on the hydraulic power unit, which is one of the main equipment in the topside module, was calculated according to the DNVGL rule; the structural safety was evaluated according to each load condition and the structural reliability of the developed product was improved. For structural analysis, MSC software was used, and structural analysis was performed under five load conditions to review structural safety for various movements. The results show that the maximum stress occurred during pitching toward the stern (Load Case 5). The stress level was approximately 85 % of the allowable stress, and the maximum deformation was approximately 5 % of the allowable value. The structural safety was confirmed, and no intermember interference occurred.

Structural health monitoring system for Sutong Cable-stayed Bridge

  • Wang, Hao;Tao, Tianyou;Li, Aiqun;Zhang, Yufeng
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.317-334
    • /
    • 2016
  • Structural Health Monitoring System (SHMS) works as an efficient platform for monitoring the health status and performance deterioration of engineering structures during long-term service periods. The objective of its installation is to provide reasonable suggestions for structural maintenance and management, and therefore ensure the structural safety based on the information extracted from the real-time measured data. In this paper, the SHMS implemented on a world-famous kilometer-level cable-stayed bridge, named as Sutong Cable-stayed Bridge (SCB), is introduced in detail. The composition and core functions of the SHMS on SCB are elaborately presented. The system consists of four main subsystems including sensory subsystem, data acquisition and transmission subsystem, data management and control subsystem and structural health evaluation subsystem. All of the four parts are decomposed to separately describe their own constitutions and connected to illustrate the systematic functions. Accordingly, the main techniques and strategies adopted in the SHMS establishment are presented and some extension researches based on structural health monitoring are discussed. The introduction of the SHMS on SCB is expected to provide references for the establishment of SHMSs on long-span bridges with similar features as well as the implementation of potential researches based on structural health monitoring.

The Design and Structural Analysis of the APV Module Structure Using Topology Optimization (위상 최적설계를 이용한 APV Module Structure의 설계 및 구조해석)

  • Kang, Sang-Hoon;Kim, Jun-Su;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.22-30
    • /
    • 2017
  • This paper presents the research results of a light weight through topology optimization and structural safety evaluation through structural analysis of a pressure system structure installed in an off-shore plant. Conducting a structure design according to the wind load and the dynamic load at sea in addition to a self-load and structure stability evaluation are very important for structures installed in off-shore plants. In this study, the wind and dynamic load conditions according to the DNV classification rule was applied to the analysis. The topology optimization method was applied to the structure to obtain a lightweight shape. Phase optimization analysis confirmed the stress concentration portion. Topology optimization analysis takes the shape by removing unnecessary elements in the design that have been designed to form a rib shape. Based on the analysis results about the light weight optimal shape, a safety evaluation through structural analysis and suitability of the shape was conducted. This study suggests a design and safety evaluation of an off-shore plant structure that is difficult for structural safety evaluations using an actual test.

A Study on the Development of a Rapid Safety Assessment System for Buildings Using Seismic Accelerometers (지진가속도 계측기를 이용한 건축물의 긴급 안전성 평가 알고리즘 개발에 대한 연구)

  • Jeong, Seong-Hoon;Jang, Won-Seok;Park, Byung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.161-170
    • /
    • 2020
  • In this study, develop the seismic acceleration measurement data conversion and signal processing algorithms for improve the operational efficiency of the seismic acceleration measurement system installed for public facilities. Through the analysis of the seismic acceleration time history data, the evaluation methods and criteria and evaluating the safety of buildings were proposed. The system was applied to the test bed building to verify its operation and usability. It is expected to be used as a decision making support data and determining the direction and priority of disaster response in the event of an earthquake.

Seismic Risk Evaluation of Isolated Emergency Diesel Generator System (면진된 비상디젤발전기의 지진위험도 평가)

  • Kim, Min-Kyu;Ohtori, Yasuki;Choun, Young-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.217-222
    • /
    • 2007
  • An Emergency Diesel Generator (EDG) is one of the safety related equipments of a Nuclear Power Plant. The seismic capacity of an EDG in nuclear power plants influences the seismic safety of the plants significantly. A recent study showed that the increase of the seismic capacity of the EDG could reduce the core damage frequency (CDF) remarkably. It is known that the major failure mode of the EDG is a concrete coning failure due to a pulling out of the anchor bolts. The use of base isolators instead of anchor bolts can increase the seismic capacity of the EDG without any major problems. This study introduces a seismic risk analysis method and presents sample results about the seismically isolated and conventional EDG system.

  • PDF

Analysis method on Structural Safety Evaluation of Butterfly Valve of Piping for LNG carrier (LNG 선박용 배관에 사용되는 Butterfly Valve의 구조 안정성 평가에 관한 해석 기법)

  • Park, Young-Chul;Park, Han-Seok;Kim, Si-Pom
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.76-81
    • /
    • 2008
  • A cryogenic butterfly valve is used to transfer the liquefied natural gas (LNG) which temperature is $-162^{\circ}C$. This valve is core part in the piping system using LNG. This paper performed coupling analysis using FEM to evaluate safety of cryogenic butterfly valve. Flow analysis is calculated numerically the CAE and CFD methods are useful to predict the thermal matter and the inner flow field of the valve. Thermal analysis and structural analysis used ANSYS Workbench.

  • PDF

Development of Strength Evaluation Methodology for Independent IMO TYPE C Tank with LH2 Carriers

  • Beom-Il, Kim ;Kyoung-Tae Kim;Shafiqul Islam
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.87-102
    • /
    • 2024
  • Given the inadequate regulatory framework for liquefied hydrogen gas storage tanks on ships and the limitations of the IGC Code, designed for liquefied natural gas, this study introduces a critical assessment procedure to ensure the safety and suitability of such tank designs. This study performed a heat transfer analysis for boil-off gas (BOG) calculations and established separate design load cases to evaluate the yielding and buckling strength. In addition, the study assessed methodologies for both high-cycle and low-cycle fatigue assessments, complemented by comprehensive structural integrity evaluations using finite element analysis. A comprehensive approach was developed to assess the structural integrity of Type C tanks by conducting crack propagation analysis and comparing these results with the IGC Code criteria. The practicality and efficacy of these methods were validated through their application on a 23K-class liquefied hydrogen carrier at the concept design stage. These findings may have important implications for enhancing safety standards and regulatory policies.