• Title/Summary/Keyword: structural rotation

Search Result 536, Processing Time 0.029 seconds

Toward High-Resolution Cryo-Electron Microscopy: Technical Review on Microcrystal-Electron Diffraction

  • Lee, Sangmin;Chung, Jeong Min;Jung, Hyun Suk
    • Applied Microscopy
    • /
    • v.47 no.4
    • /
    • pp.223-225
    • /
    • 2017
  • Cryo-electron microscopy (cryo-EM) is arguably the most powerful tool used in structural biology. It is an important analytical technique that is used for gaining insight into the functional and molecular mechanisms of biomolecules involved in several physiological processes. Cryo-EM can be separated into the following three groups according to the analytical purposes and the features of the biological samples: cryo-electron tomography (cryo-ET), cryo-single-particle reconstruction, and cryo-electron crystallography. Cryo-tomography is a unique EM technique that is used to study intact biomolecular complexes within their original environments; it can provide mechanistic insights that are challenging for other EM-methods. However, the resolution of reconstructed three-dimensional (3D) models generated by cryo-ET is relatively low, while single-particle reconstruction can reproduce biomolecular structures having near-atomic resolution without the need for crystallization unless the samples are large (>200 kDa) and highly symmetrical. Cryo-electron crystallography is subdivided into the following two categories according to the types of samples: one category that deals with two-dimensional (2D) crystalline arrays and the other category that uses 3D crystals. These two categories of electron-crystallographic techniques use different diffraction data obtained from still diffraction and continuous-rotation diffraction. In this paper, we review crystal-based cryo-EM techniques and focus on the recently developed 3D electron-crystallographic technique called microcrystal-electron diffraction.

Paleomagnetic Study of the Yeonil Group in Pohang Basin (포항분지(浦港盆地)에 분포(分布)하는 연일층군(延日層群)의 고지자기(古地磁氣) 연구(硏究))

  • Kim, Kwang Ho;Doh, Seong-Jae;Hwang, Chang-Soo;Lim, Dong Seong
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.507-518
    • /
    • 1993
  • Paleomagnetic investigations have been carried out on the Tertiary sedimentary formations (Yeonil Group) in Pohang basin, southeastern Korea. A total of 215 samples were collected from 26 sites. Progressive thermal demagnetization indicates that many samples have unstable magnetization and do not reveal a characteristic direction. However, some samples from the lower and upper Duho Formation show a characteristic direction $D/I=7.8^{\circ}/48.3^{\circ}$ (${\alpha}_{95}=3.7^{\circ}$, k=174.1). Stepwise thermal demagnetization data show that some samples from the Hagjeon and middle Duho Formations reveal great-circle distributions moving from the present to a reversed direction of geomagnetic field. The mean of intersection points of the great-circles is nearly antipodal to the characteristic normal direction of the lower and upper Duho Formation. We infer that the Hagjeon Formation was formed during the reversed polarity chron C5B (16.2~14.7 Ma) and the Duho Formation 14.7~11.6 Ma based on our results and previous paleontologic and age dating data. Paleomagnetic direction for the Middle Miocene of Korea, analysed from the combined results of stable endpoints and great circles, is $D/I=8.7^{\circ}/53.9^{\circ}$ (${\alpha}_{95}=4.2^{\circ}$, k=74.8), and the corresponding paleopole is Lat./Long.=$82.7^{\circ}/230.2^{\circ}$ (${\delta}p=2.8^{\circ}$, ${\delta}m=5.9^{\circ}$). On the basis of this, we interpret that the opening of the East sea (Japan sea) or the synchronous clockwise rotation of the Southwest Japan exerted no structural influence on the Yeonil Group in the Middle Miocene.

  • PDF

A comparative study for beams on elastic foundation models to analysis of mode-I delamination in DCB specimens

  • Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.149-162
    • /
    • 2011
  • The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.

Design of a ship model for hydro-elastic experiments in waves

  • Maron, Adolfo;Kapsenberg, Geert
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1130-1147
    • /
    • 2014
  • Large size ships have a very flexible construction resulting in low resonance frequencies of the structural eigen-modes. This feature increases the dynamic response of the structure on short period waves (springing) and on impulsive wave loads (whipping). This dynamic response in its turn increases both the fatigue damage and the ultimate load on the structure; these aspects illustrate the importance of including the dynamic response into the design loads for these ship types. Experiments have been carried out using a segmented scaled model of a container ship in a Seakeeping Basin. This paper describes the development of the model for these experiments; the choice was made to divide the hull into six rigid segments connected with a flexible beam. In order to model the typical feature of the open structure of the containership that the shear center is well below the keel line of the vessel, the beam was built into the model as low as possible. The model was instrumented with accelerometers and rotation rate gyroscopes on each segment, relative wave height meters and pressure gauges in the bow area. The beam was instrumented with strain gauges to measure the internal loads at the position of each of the cuts. Experiments have been carried out in regular waves at different amplitudes for the same wave period and in long crested irregular waves for a matrix of wave heights and periods. The results of the experiments are compared to results of calculations with a linear model based on potential flow theory that includes the effects of the flexural modes. Some of the tests were repeated with additional links between the segments to increase the model rigidity by several orders of magnitude, in order to compare the loads between a rigid and a flexible model.

Evaluation of Geometric Error Sources for Terrestrial Laser Scanner

  • Lee, Ji Sang;Hong, Seung Hwan;Park, Il Suk;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • As 3D geospatial information is demanded, terrestrial laser scanners which can obtain 3D model of objects have been applied in various fields such as Building Information Modeling (BIM), structural analysis, and disaster management. To acquire precise data, performance evaluation of a terrestrial laser scanner must be conducted. While existing 3D surveying equipment like a total station has a standard method for performance evaluation, a terrestrial laser scanner evaluation technique for users is not established. This paper categorizes and analyzes error sources which generally occur in terrestrial laser scanning. In addition to the prior researches about categorizing error sources of terrestrial Laser scanning, this paper evaluates the error sources by the actual field tests for the smooth in-situ applications.The error factors in terrestrial laser scanning are categorized into interior error caused by mechanical errors in a terrestrial laser scanner and exterior errors affected by scanning geometry and target property. Each error sources were evaluated by simulation and actual experiments. The 3D coordinates of observed target can be distortedby the biases in distance and rotation measurement in scanning system. In particular, the exterior factors caused significant geometric errors in observed point cloud. The noise points can be generated by steep incidence angle, mixed-pixel and crosstalk. In using terrestrial laser scanner, elaborate scanning plan and proper post processing are required to obtain valid and accurate 3D spatial information.

Evaluation of growth changes induced by functional appliances in children with Class II malocclusion: Superimposition of lateral cephalograms on stable structures

  • Oh, Eunhye;Ahn, Sug-Joon;Sonnesen, Liselotte
    • The korean journal of orthodontics
    • /
    • v.50 no.3
    • /
    • pp.170-180
    • /
    • 2020
  • Objective: To compare short- and long-term dentoalveolar, skeletal, and rotational changes evaluated by Björk's structural method of superimposition between children with Class II malocclusion treated by functional appliances and untreated matched controls. Methods: Seventy-nine prepubertal or pubertal children (mean age, 11.57 ± 1.40 years) with Class II malocclusion were included. Thirty-four children were treated using an activator with a high-pull headgear (Z-activator), while 28 were treated using an activator without a headgear (E-activator). Seventeen untreated children were included as controls. Lateral cephalograms were obtained before treatment (T1), after functional appliance treatment (T2), and after retention in the postpubertal phase (T3). Changes from T1 to T2 and T1 to T3 were compared between the treated groups and control group using multiple linear regression analysis. Results: Relative to the findings in the control group at T2, the sagittal jaw relationship (subspinale-nasion-pogonion, p < 0.001), maxillary prognathism (sella-nasion-subspinale, p < 0.05), and condylar growth (p < 0.001) exhibited significant improvements in the Z- and E-activator groups, which also showed a significantly increased maxillary incisor retraction (p < 0.001) and decreased overjet (p < 0.001). Only the E-activator group exhibited significant backward rotation of the maxilla at T2 (p < 0.01). The improvements in the sagittal jaw relationship (p < 0.01) and dental relationship (p < 0.001) remained significant at T3. Condylar growth and jaw rotations were not significant at T3. Conclusions: Functional appliance treatment in children with Class II malocclusion can significantly improve the sagittal jaw relationship and dental relationships in the long term.

A parametric study on fatigue of a top-tensioned riser subjected to vortex-induced vibrations

  • Kim, Do Kyun;Wong, Eileen Wee Chin;Lekkala, Mala Konda Reddy
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.365-387
    • /
    • 2019
  • This study aims to provide useful information on the fatigue assessment of a top-tensioned riser (TTR) subjected to vortex-induced vibration (VIV) by performing parametric study. The effects of principal design parameters, i.e., riser diameter, wall thickness, water depth (related to riser length), top tension, current velocity, and shear rate (or shear profile of current) are investigated. To prepare the base model of TTR for parametric studies, three (3) riser modelling techniques in the OrcaFlex were investigated and validated against a reference model by Knardahl (2012). The selected riser model was used to perform parametric studies to investigate the effects of design parameters on the VIV fatigue damage of TTR. From the obtained comparison results of VIV analysis, it was demonstrated that a model with a single line model ending at the lower flex joint (LFJ) and pinned connection with finite rotation stiffness to simulate the LFJ properties at the bottom end of the line model produced acceptable prediction. Moreover, it was suitable for VIV analysis purposes. Findings from parametric studies showed that VIV fatigue damage increased with increasing current velocity, riser outer diameter and water depth, and decreased with increasing shear rate and top tension of riser. With regard to the effects of wall thickness, it was not significant to VIV fatigue damage of TTR. The detailed outcomes were documented with parametric study results.

Self Displacement Sensing (SDS) Nano Stage

  • Choi, Soo-Chang;Park, Jeong-Woo;Kim, Yong-Woo;Lee, Deug-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.70-74
    • /
    • 2007
  • This paper describes the development of a nano-positioning system for nanoscale science and engineering. Conventional positioning systems, which can be expensive and complicated, require the use of laser interferometers or capacitive transducers to measure nanoscale displacements of the stage. In this study, a new self-displacement sensing (SDS) nano-stage was developed using mechanical magnification of its displacement signal. The SDS nano-stage measured the displacement of its movement using a position-sensitive photodiode (PSPD), a laser source, and a hinge-connected rotating mirror plate. A beam from a laser diode was focused onto the middle of the plate with the rotating mirror. The position variation of the reflected beam from the mirror rotation was then monitored by the PSPD. Finally, the PSPD measured the amplified displacement as opposed to the actual movement of the stage via an optical lever mechanism, providing the ability to more precisely control the nanoscale stage. The displacement amplification process was modeled by structural analysis. The simulation results of the amplification ratio showed that the distance variation between the PSPD and the mirror plate as well as the length L of the mirror plate could be used as the basic design parameters for a SDS nano-stage. The PSPD was originally designed for a total travel range of 30 to 60 mm, and the SDS nano-stage amplified that range by a factor of 15 to 25. Based on these results, a SDS nano-stage was fabricated using principle of displacement amplification.

Performance Analysis of AOA Estimation for Concentric Ring Array Antenna in Beamforming Satellite System (빔형성 위성 시스템의 동심원 배열 안테나에 대한 도래각 추정 성능 분석)

  • Kim, Tae-Yun;Lee, Dongbin;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.643-650
    • /
    • 2020
  • The phased array antenna has an advantage enabling rapid beam aim without the mechanical rotation of the antenna, because it arranges multiple elements in a linear or planer (grid or circular) and electronically controls the phase for each element. The planar array antenna is generally used a grid array and a circular array, and the circular form has the higher resolution comparing to the grid form due to the its structural characteristics. However, a concentric circular array (CCA) or a concentric ring array (CRA) with multiple circular arrays which each has different radius is used in the limited area, because the entire radius should be increased for the circular array with a number of elements. In this paper, we introduce the angle-of-arrival (AOA) estimator for an adaptive beamforming satellite system based on CRA and provide the simulation results for performance evaluation. In addition, simulation results are compared and analyzed to the case for the circular array antenna.

A Study on the Analysis for Development of a Deflector Type Miniature Ball Screw (초소형 디플렉터 타입 볼스크류 개발을 위한 해석에 관한 연구)

  • Lee, Choon-Man;Moon, Sung-Ho;Lee, Young-Hun;Kim, Jun-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.979-984
    • /
    • 2016
  • Recently, ball screws have been used in machine tools, robot parts, and medical instruments. The demand for ball screws of high precision and reduced size is increasing because of the growth of high value-added industries. Three types of ball screws are typically used: deflector type, end-cap type, and tube type. They are also classified from C0 to C9 according to the precision level. A deflector type ball screw can reduce the variation of rotational torque and the size of the nut of the ball screw is minimized. To ensure the reliable design of ball screws, it is important to perform a structural analysis. The purpose of this study is to perform a stability evaluation through analysis of a deflector type miniature ball screw for weapon systems. The analysis is performed through Finite Elements Method (FEM) simulation to predict characteristics such as deformation, stress, and thermal effects. The interference between the shaft and the deflector for smooth rotation are also studied. Based on the results of the analysis, the development of the deflector type miniature ball screw for weapon systems is performed.