• Title/Summary/Keyword: structural retrofitting

Search Result 248, Processing Time 0.019 seconds

Seismic performance of RC bridge piers subjected to moderate earthquakes

  • Chung, Young Soo;Park, Chang Kyu;Lee, Dae Hyoung
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.429-446
    • /
    • 2006
  • Experimental investigation was conducted to evaluate the seismic ductility of earthquake-experienced concrete columns with an aspect ratio of 2.5. Eight circular concrete columns with a diameter of 600 mm were constructed with three test parameters: confinement ratio, lap-splice of longitudinal bars, and retrofitting with Fiber Reinforced Polymer (FRP) materials. The objective of this research is to examine the seismic performance of RC bridge piers subjected to a Quasi static test (QST), which were preliminary tested under a series of artificial earthquake motions referred to as a Pseudo dynamic test (PDT). The seismic enhancement effect of FRP wrap was also investigated on these RC bridge piers. Six specimens were loaded to induce probable damage by four series of artificial earthquakes, which were developed to be compatible with earthquakes in the Korean peninsula by the Korea Highway Corporation (KHC). Directly after the PDT, six earthquake-experienced columns were subjected to inelastic cyclic loading under a constant axial load of $0.1{f_c}^{\prime}A_g$. Two other reference specimens without the PDT were also subjected to similar quasi-static loads. Test results showed that specimens pre-damaged by moderate artificial earthquakes generally demonstrated good residual seismic performance, which was similar to the corresponding reference specimen. Moreover, RC bridge specimens retrofitted with wrapping fiber composites in the potential plastic hinge region exhibited enhanced flexural ductility.

Experimental study on strengthening of R.C beam using glass fibre reinforced composite

  • Mini, K.M.;Alapatt, Rini John;David, Anjana Elizabeth;Radhakrishnan, Aswathy;Cyriac, Minu Maria;Ramakrishnan, R.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.275-286
    • /
    • 2014
  • This paper reports the influence of number of layers and length of GFRP sheets wrapped onto RCC beams for strengthening. Twelve beams of size $700mm{\times}150mm{\times}150mm$ were cast and tested. Two beams without GFRP and ten beams wrapped in different lay-up patterns with one and two layers of GFRP sheets was subjected to three point loading test and ultrasonic pulse velocity test. Initial crack load, ultimate failure load and types of failure have been observed and noted. Experimental results indicate a significant increase in initial and ultimate load carrying capacity of GFRP wrapped beams compared to unwrapped beams. The failed control specimen was retrofitted using U wrap scheme and tested under three point loading.

Diagonal bracing of steel frames with multi-cable arrangements

  • Husem, Metin;Demir, Serhat;Park, Hong G.;Cosgun, Suleyman I.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1121-1137
    • /
    • 2016
  • A large number of structure in the world were build with poor seismic details, with or without any lateral load resisting system like concentrically braced frames and steel plate shear walls. These structures can reveal deteriorating hysteretic behaviors with stiffness and strength degradation. Therefore, seismic retrofitting of such structures for drift control has vital importance. In this study a retrofit methodology has been developed, which involves diagonal bracing of steel frames with different cable arrangements. In the experimental and numerical program 5 different lateral load resisting system were tested and results compared with each other. The results indicated that multi-cable arrangements suggested in this study showed stable ductile behavior without any sudden decrease in strength. Due to the usage of more than one diagonal cable, fracture of any cable did not significantly affect the overall strength and deformation capacity of the system. In cable braced systems damages concentrated in the boundary zones of the cables and beams. That is why boundary zone must have enough stiffness and strength to resist tension field action of cables.

The effect of mainshock-aftershock on the residual displacement of buildings equipped with cylindrical frictional damper

  • Mirtaheri, Masoud;Amini, Mehrshad;Rad, Moosa Doosti
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.515-527
    • /
    • 2017
  • Recently, Friction dampers become popular due to the desirable performance in the energy dissipation of lateral loads. A lot of research which has been conducted on these dampers results in developing friction dampers with low sensitivity to the number of cycles and temperature increases. Friction dampers impose high residual drifts to the buildings because of low post-yield stiffness of the damper which results from increasing lateral displacement and period of buildings. This issue can be more critical under strong aftershocks which results in increasing of structural damages. In this paper, in addition to the assessment of aftershock on steel buildings equipped with friction dampers, methods for controlling residual drifts and decreasing the costs of retrofitting are investigated. Utilizing rigid connections as a lateral dual system and activating lateral stiffness of gravity columns by adding elastic braces are as an example of effective methods investigated in this research. The results of nonlinear time history analyses on the low to medium rise steel frames equipped with friction dampers illustrate a rise in residual drifts as the result of aftershocks. In addition, the results show that different slip loads of friction damper can affect the residual drifts. Furthermore, elastic stories in comparison to rigid connections can reduce residual drifts of buildings in an effective fashion, when most slip loads of friction dampers are considered.

Hysteresis Model for the Cyclic Response of Existing Reinforced Concrete Frames (기존 철근콘크리트 골조의 반복거동 예측을 위한 이력모델)

  • Son, Joo-Ki;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.81-89
    • /
    • 2020
  • As the damage caused by earthquakes gradually increases, seismic retrofitting for existing public facilities has been implemented in Korea. Several types of structural analysis methods can be used to evaluate the seismic performance of structures. Among them, for nonlinear dynamic analysis, the hysteresis model must be carefully applied because it can significantly affect the behavior. In order to find a hysteresis model that predicts rational behavior, this study compared the experimental results and analysis results of the existing non-seismic reinforced concrete frames. For energy dissipation, the results were close to the experimental values in the order of Pivot, Concrete, Degrading, and Takeda models. The Concrete model underestimated the energy dissipation due to excessive pinching. In contrast, the other ones except the Pivot model showed the opposite results with relatively little pinching. In the load-displacement curves, the experimental and analysis results tended to be more similar when the column axial force was applied to columns.

Fragility Assessment of Damaged Piloti-Type RC Building With/Without BRB Under Successive Earthquakes (연속 지진에 의하여 손상된 필로티 RC 건축물의 BRB 보강 전/후의 취약성 평가)

  • Shin, Jiuk;Kim, JunHee;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-141
    • /
    • 2013
  • This paper presents the seismic evaluation and prediction of a damaged piloti-type Reinforced Concrete (RC) building before and after post-retrofitting under successive earthquakes. For considering realistic successive earthquakes, the past records measured at the same station were combined. In this study, the damaged RC building due to the first earthquake was retrofitted with a buckling-restrained brace (BRB) before the second earthquake occurred. Nonlinear Time History Analysis (NTHA) was performed under the scaled intensity of the successive ground motions. Based on the extensive structural response data obtained form from the NTHA, the fragility relationships between the ground shaking intensity and the probability of reaching a pre-determined limit state was were derived. In addition, The the fragility curves of the pre-damaged building without and with the BRBs were employed to evaluate the effect of the successive earthquakes and the post-retrofit effect. Through the seismic assessment subjected to the successive records, it was observed that the seismic performance of the pre-damaged building was significantly affected by the severity of the damage from the first earthquake damages and the hysteresis behavior of the retrofit element.

Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars

  • Ramezanpour, M.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.45-52
    • /
    • 2018
  • Several techniques have been developed for shear strengthening of reinforced concrete (RC) members by using fiber reinforced polymer (FRP) composites. However, debonding of FRP retrofits from concrete substrate still deemed as a challenging concern in their application which needs to be scrutinized in details. As a result, this paper reports on the results of an experimental investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP reinforcing bars. The main objective of the experimentation was increasing the efficiency of shear retrofits by precluding/postponing the premature debonding failure. The experimental program was comprised of six shear deficient RC beams. The test parameters include the FRP rebar spacing, inclination angle, and groove shape. Also, an innovative modification was introduced to the conventional NSM technique and its efficiency was evaluated by experimental observation and measurement. The results testified the efficiency of glass FRP (GFRP) rebars in increasing the shear strength of the test specimens retrofitted using conventional NSM technique. However, debonding of FRP bars impeded exploiting all retrofitting advantages and induced a premature shear failure. On the contrary, application of the proposed modified NSM (MNSM) technique was not only capable of preventing the premature debonding of FRP bars, but also could replace the failure mode of specimen from the brittle shear to a ductile flexural failure which is more desirable.

Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets

  • Khan, Umais;Al-Osta, Mohammed A.;Ibrahim, A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.125-142
    • /
    • 2017
  • Extensive research work has been performed on shear strengthening of reinforced concrete (RC) beams retrofitted with externally bonded carbon fiber reinforced polymer (CFRP) in form of strips. However, most of this research work is experimental and very scarce studies are available on numerical modelling of such beams due to truly challenging nature of modelling concrete shear cracking and interfacial interaction between components of such beams. This paper presents an appropriate model for RC beam and to simulate its cracking without numerical computational difficulties, convergence and solution degradation problems. Modelling of steel and CFRP and their interfacial interaction with concrete are discussed. Finally, commercially available non-linear finite element software ABAQUS is used to validate the developed finite element model with key tests performed on full scale T-beams with and without CFRP retrofitting, taken from previous extensive research work. The modelling parameters for bonding behavior of CFRP with special anchors are also proposed. The results presented in this research work illustrate that appropriate modelling of bond behavior of all the three types of interfaces is important in order to correctly simulate the shear behavior of RC beams strengthened with CFRP.

Seismic performance and damage assessment of reinforced concrete bridge piers with lap-spliced longitudinal steels

  • Chung, Young S.;Park, Chang K.;Lee, Eun H.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.99-112
    • /
    • 2004
  • It is known that lap splices in the longitudinal reinforcement of reinforced concrete (RC) bridge columns are not desirable for seismic performance, but it is sometimes unavoidable. Lap splices were practically located in the potential plastic hinge region of most bridge columns that were constructed before the 1992 seismic design provisions of the Korea Bridge Design Specification. The objective of this research is to evaluate the seismic performance of reinforced concrete (RC) bridge piers with lap splicing of longitudinal reinforcement in the plastic hinge region, to develop an enhancement scheme for their seismic capacity by retrofitting with glassfiber sheets, and to assess a damage of bridge columns subjected to seismic loadings for the development of rational seismic design provisions in low or moderate seismicity region. Nine (9) test specimens with an aspect ratio of 4 were made with three confinement ratios and three types of lap splice. Quasi-static tests were conducted in a displacement-controlled way under three different axial loads. A significant reduction of displacement ductility was observed for test columns with lap splices of longitudinal reinforcements, whose displacement ductility could be greatly improved by externally wrapping with glassfiber sheets in the plastic hinge region. A damage of the limited ductile specimen was assessed to be relatively small.

Rotational capacity of shallow footings and its implication on SSI analyses

  • Blandon, Carlos A.;Smith-Pardo, J. Paul;Ortiz, Albert
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.591-617
    • /
    • 2015
  • Standards for seismic assessment and retrofitting of buildings provide deformation limit states for structural members and connections. However, in order to perform fully consistent performance-based seismic analyses of soil-structure systems; deformation limit states must also be available for foundations that are vulnerable to nonlinear actions. Because such limit states have never been established in the past, a laboratory testing program was conducted to study the rotational capacity of small-scale foundation models under combined axial load and moment. Fourteen displacement-controlled monotonic and cyclic tests were performed using a cohesionless soil contained in a $2.0{\times}2.0{\times}1.2m$ container box. It was found that the foundation models exhibited a stable hysteretic behavior for imposed rotations exceeding 0.06 rad and that the measured foundation moment capacity complied well with Meyerhof's equivalent width concept. Simplified code-based soil-structure analyses of an 8-story building under an array of strong ground motions were also conducted to preliminary evaluate the implication of finite rotational capacity of vulnerable foundations. It was found that for the same soil as that of the experimental program foundations would have a deformation capacity that far exceeds the imposed rotational demands under the lateral load resisting members so yielding of the soil may constitute a reliable source of energy dissipation for the system.