• Title/Summary/Keyword: structural response concrete

Search Result 813, Processing Time 0.024 seconds

Limit states of RC structures with first floor irregularities

  • Favvata, Maria J.;Naoum, Maria C.;Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.791-818
    • /
    • 2013
  • The seismic performance of reinforced concrete (RC) frame structures with irregularities leading to soft first floor is studied using capacity assessment procedures. The soft first story effect is investigated for the cases: (i) slab-column connections without beams at the first floor, (ii) tall first story height and (iii) pilotis type building (open ground story). The effects of the first floor irregularity on the RC frame structure performance stages at global and local level (limit states) are investigated. Assessment based on the Capacity Spectrum Method (ATC-40) and on the Coefficient Method (FEMA 356) is also examined. Results in terms of failure modes, capacity curves, interstory drifts, ductility requirements and infills behaviour are presented. From the results it can be deduced that the global capacity of the structures is decreased due to the considered first floor morphology irregularities in comparison to the capacities of the regular structure. An increase of the demands for interstory drift is observed at the first floor level due to the considered irregularities while the open ground floor structure (pilotis type) led to even higher values of interstory drift demands at the first story. In the cases of tall first story and slab-column connections without beams soft-story mechanisms have also been observed at the first floor. Rotational criteria (EC8-part3) showed that the structure with slab-column connections without beams exhibited the most critical response.

A Study on Speeding Behavior Propensity Analysis by Theory of Planned Behavior (계획행동이론을 통한 과속운전 성향분석에 관한 연구)

  • Lee, Chang Hee;Kum, Ki Jung;Kim, Myung Soo
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.83-92
    • /
    • 2015
  • PURPOSES : Traffic accidents and damage due to speeding should be recognized as a problem which harms society and the economy as well as the parties to the accidents. It is time to seek more detailed and concrete customized alternatives than the existing policies for the prevention of traffic accidents. METHODS: In this study, we identified the characteristics driver behavior and psychological factors that lead to speeding, and a study was carried out to verify the causality models developed from the factors we identified. RESULTS : Driving behavior variables have a significant effect on speeding behaviors in order of Lapse, Violation, and Mistake. And the violation which is defined as intentional violation showed the result which supports the research hypothesis as it has the significant effect on speeding intention and behaviors. CONCLUSIONS: The result of this study can be utilized to develop educational problems concerning speeding and previous response with the main objective of eliminating speeding driver behavior.

Floor Impact Noise Reduction Performance of Double-Floor System in Apartments (공동주택 이중바닥구조의 바닥충격음 저감성능)

  • Baek, Gil-Ok;Park, Hong-Gun;Mun, Dae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.197-202
    • /
    • 2014
  • Floor Impact Noise is a structure-borne noise which is mainly caused by vibration of concrete slabs. The majority of previous studies have focused on investigating performance of absorbing sheets on the reduction of floor impact noise. But absorbing sheets do not efficiently reduce heavy-weight floor impact noise level because it cannot absorb slab vibration, which is the fundamental noise source. In this study, double-floor system was developed in order to reduce floor impact noise level in residual buildings. This floor system reduces heavy-weight impact noise level by reducing vibration response at the center of slab, which has maximum amplitude in the 1st vibration mode. In order to identify the performance of the double-floor system, experiments were planned. Primary test parameters are span of double floor, arrangement and types of absorbing sheets.

  • PDF

Effects of traffic-induced vibrations on bridge-mounted overhead sign structures

  • Kim, Janghwan;Kang, Jun Won;Jung, Hieyoung;Pack, Seung-woo
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.365-377
    • /
    • 2015
  • Large-amplitude vibration of overhead sign structures can cause unfavorable psychological responses in motorists, interfere with readability of the signs, and lead to fatigue cracking in the sign structures. Field experience in Texas suggests that an overhead sign structure can vibrate excessively when supported within the span of a highway bridge instead of at a bent. This study used finite element modeling to analyze the dynamic displacement response of three hypothetical sign structures subjected to truck-passage-induced vertical oscillations recorded for the girders from four actual bridges. The modeled sign bridge structures included several span lengths based on standard design practices in Texas and were mounted on precast concrete I-girder bridges. Results revealed that resonance with bridge girder vertical vibrations can amplify the dynamic displacement of sign structures, and a specific range of frequency ratios subject to undesirable amplification was identified. Based on these findings, it is suggested that this type of sign structure be located at a bridge bent if its vertical motion frequency is within the identified range of bridge structure excitation frequencies. Several alternatives are investigated for cases where this is not possible, including increasing sign structure stiffness, reducing sign mass, and installing mechanical dampers.

Temperature and Stress Analysis of Box Culvert in Fire (화재에 의한 지하공동구의 온도 및 응력해석)

  • Kim, Hyun-Jun;Im, Cho-Rong;Yoo, Hyeon-Kyeong;Chung, Chul-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.31-44
    • /
    • 2011
  • This paper has presented a finite element analysis of structural behaviour of box culvert during and after fires. The fire tests were carried out in a furnace on RC slabs using the ISO 834 standard fire curve. The load capacity after cooling of the RC slab that was not loaded during the fire tests was evaluated by means of additional 3 points bending tests. In the past, stress-strain models of concrete under fire loading have been proposed by several researchers. Comparisons are made with the load-displacement relations of RC slabs after fire loading using the existing stress-strain models with temperature, such as Schneider, EUROCODE 2, Lie, Shi and Nan model. By comparing the load-displacement relations, Lie model was found to result in a maximum load about 2.0% higher than that of test. Based on the fire test results of RC slabs, this paper presents an extensive analytical study on the fire response of box culvert during and after fires.

Experimental behavior of eccentrically loaded R.C. short columns strengthened using GFRP wrapping

  • Elwan, S.K.;Rashed, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2011
  • This paper aims to study the behavior of short reinforced concrete columns confined with external glass Fiber Reinforced Polymers (GFRP) sheets under eccentric loads. The experimental part of the study was achieved by testing 9 specimens under eccentric compression. Three eccentricity ratios corresponding to e/t = 0, 0.10, 0.50 in one direction of the column were used. Specimens were divided into three groups. The first group was the control one without confinement. The second group was fully wrapped with GFRP laminates before loading. The third group was wrapped under loading after reaching 75% of failure loads of the control specimens. The third group was investigated in order to represent the practical case of strengthening a loaded column with FRP laminates. All specimens were loaded until failure. The results show that GFRP laminates enhances both failure load and ductility response of eccentrically loaded column. Moreover, the study also illustrates the effect of confinement on the first crack load, lateral deformation, strain in reinforcement and failure pattern. Based on the analysis of the experimental results, a simple model has been proposed to predict the improvement of load carrying capacity under different eccentricity ratios. The predicted equation takes into consideration the eccentricity to cross section depth ratio, the ultimate strength of GFRP, the thickness of wrapping laminate, and the time of wrapping (before loading and under loading). A good correlation was obtained between experimental and analytical results.

Wind tunnel model studies to predict the action of wind on the projected 558 m Jakarta Tower

  • Isyumov, N.;Case, P.C.;Ho, T.C.E.;Soegiarso, R.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.299-314
    • /
    • 2001
  • A study of wind effects was carried out at the Boundary Layer Wind Tunnel Laboratory (BLWTL) for the projected 558-m high free-standing telecommunication and observation tower for Jakarta, Indonesia. The objectives were to assist the designers with various aspects of wind action, including the overall structural loads and responses of the Tower shaft and the antenna superstructure, the local wind pressures on components of the exterior envelope, and winds in pedestrian areas. The designers of the Tower are the East China Architectural Design Institute (ECADI) and PT Menara Jakarta, Indonesia. Unfortunately, the project is halted due to the financial uncertainties in Indonesia. At the time of the stoppage, pile driving had been completed and slip forming of the concrete shaft of the Tower had begun. When completed, the Tower will exceed the height of the CN-Tower in Toronto, Canada by some 5 m.

Characteristic analysis on train-induced vibration responses of rigid-frame RC viaducts

  • Sun, Liangming;He, Xingwen;Hayashikawa, Toshiro;Xie, Weiping
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1015-1035
    • /
    • 2015
  • A three-dimensional (3D) numerical analysis for the train-bridge interaction (TBI) system is actively developed in this study in order to investigate the vibration characteristics of rigid-frame reinforced concrete (RC) viaducts in both vertical and lateral directions respectively induced by running high-speed trains. An analytical model of the TBI system is established, in which the high-speed train is described by multi-DOFs vibration system and the rigid-frame RC viaduct is modeled with 3D beam elements. The simulated track irregularities are taken as system excitations. The numerical analytical algorithm is established based on the coupled vibration equations of the TBI system and verified through the detailed comparative study between the computation and testing. The vibration responses of the viaducts such as accelerations, displacements, reaction forces of pier bottoms as well as their amplitudes with train speeds are calculated in detail for both vertical and lateral directions, respectively. The frequency characteristics are further clarified through Fourier spectral analysis and 1/3 octave band spectral analysis. This study is intended to provide not only a simulation approach and evaluation tool for the train-induced vibrations upon the rigid-frame RC viaducts, but also instructive information on the vibration mitigation of the high-speed railway.

Time-dependent analysis of cable trusses -Part I. Closed-form computational model

  • Kmet, S.;Tomko, M.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.157-169
    • /
    • 2011
  • In this paper the time-dependent closed-form static solution of the suspended pre-stressed biconcave and biconvex cable trusses with unmovable, movable and elastic or viscoelastic yielding supports subjected to various types of vertical load is presented. Irvine's forms of the deflections and the cable equations are modified because the effects of the rheological behaviour needed to be incorporated in them. The concrete cable equations in the form of the explicit relations are derived and presented. From a solution of a vertical equilibrium equation for a loaded cable truss with rheological properties, the additional vertical deflection as a time-function is determined. The time-dependent closed-form model serves to determine the time-dependent response, i.e., horizontal components of cable forces and deflection of the cable truss due to applied loading at the investigated time considering effects of elastic deformations, creep strains, temperature changes and elastic supports. Results obtained by the present closed-form solution are compared with those obtained by FEM. The derived time-dependent closed-form computational model is used for a time-dependent simulation-based reliability assessment of cable trusses as is described in the second part of this paper.

Simplified robustness assessment of steel framed structures under fire-induced column failure

  • Jiang, Binhui;Li, Guo-Qiang;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.199-213
    • /
    • 2020
  • This paper proposes a Global-Local Analysis Method (GLAM) to assess the progressive collapse of steel framed structures under fire-induced column failure. GLAM obtains the overall structural response by combining dynamic analysis of the heated column (local) with static analysis of the overall structure (global). Test results of two steel frames which explicitly consider the dynamic effect during fire-induced column failure were employed to validate the proposed GLAM. Results show that GLAM gives reasonable predictions to the test frames in terms of both whether to collapse and the displacement verse temperature curves. Besides, several case studies of a two-dimensional (2D) steel frame and a three-dimensional (3D) steel frame with concrete slabs were conducted by using GLAM. Results show that GLAM gives the same collapse predictions to the studied cases with nonlinear dynamic analysis of the whole structure model. Compared with nonlinear dynamic analysis of the whole structure model, GLAM saves approximately 70% and 99% CPU time for the cases of 2D and 3D steel frame, respectively. Results also show that the load level of a structure has notable effects on the restraint condition of a heated column in the structure.