• 제목/요약/키워드: structural response concrete

검색결과 804건 처리시간 0.024초

Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.443-454
    • /
    • 2019
  • In order to reduce the residual drift of a structure in structural engineering field, a combined structural system (dual) consisting of steel buckling-restrained braced frame (BRBF) along with shear wall is proposed. In this paper, BRBFs are used with special reinforced concrete shear walls as combined systems. Some prototype models of the proposed combined systems as well as steel BRBF-only systems (without walls) are designed according to the code recommendations. Then, the nonlinear model of the systems is prepared using fiber elements for the reinforced concrete wall and appropriate elements for the BRBs. Seismic responses of the combined systems subjected to ground motions at maximum considered earthquake level are investigated and compared to those obtained from BRBFs. Results showed that the maximum residual inter-story drift from the combined systems is, on average, less than half of the corresponding value of the BRBFs. In this research, mean of absolute values of the maximum inter-story drift ratio demand obtained from combined systems is less than the 3% limitation, while this criterion has not been fulfilled by BRBF systems.

Structural Steel as Boundary Elements in Ductile Concrete Walls

  • Cho, Soon-Ho
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.73-84
    • /
    • 2000
  • A new form of construction utilizing structural steel as the boundary elements in ductile flexural concrete walls is proposed to solve the bar congestion problems in such a heavily reinforced region, while maintaining the ductility and energy absorption capacity comparable to their traditional form. Two wall specimens containing rectangular hollow structural sections (HSS) and channels at their ends respectively, and one companion standard reinforced concrete wall specimen with concentrated end reinforcement were constructed and tested under reversed cyclic loading to evaluate the construction process as well as the structural performance. Initially, all three specimens were chosen and detailed with some caution to have approximately the same flexural capacity without change of the original shape and dimension of a rectangular cross section correction. Analysis and comparison of test results indicated that the reversed cyclic responses of three walls showed similar hysteretic properties, but in those with steel boundaries, local buckling of the corresponding steel webs and flanges following significant yielding was a dominant factor to determine the hysteretic response. The monotonic and cyclic responses predicted based on a sectional approach was also presented and found to be in good agreement with measured results. Design recommendations considering local instability of the structural steel elements and the interaction between steel chords and a concrete web member in such a composite wall are presented.

  • PDF

ReliabIlity analysis of containment building subjected to earthquake load using response surface method

  • Lee, Seong Lo
    • Computers and Concrete
    • /
    • 제3권1호
    • /
    • pp.1-15
    • /
    • 2006
  • The seismic safety of reinforced concrete containment building can be evaluated by probabilistic analysis considering randomness of earthquake, which is more rational than deterministic analysis. In the safety assessment of earthquake-resistant structures by the deterministic theory, it is not easy to consider the effects of random variables but the reliability theory and random vibration theory are useful to assess the seismic safety with considering random effects. The reliability assessment of reinforced concrete containment building subjected to earthquake load includes the structural analysis considering random variables such as load, resistance and analysis method, the definition of limit states and the reliability analysis. The reliability analysis procedure requires much time and labor and also needs to get the high confidence in results. In this study, random vibration analysis of containment building is performed with random variables as earthquake load, concrete compressive strength, modal damping ratio. The seismic responses of critical elements of structure are approximated at the most probable failure point by the response surface method. The response surface method helps to figure out the quantitative characteristics of structural response variability. And the limit state is defined as the failure surface of concrete under multi-axial stress, finally the limit state probability of failure can be obtained simply by first-order second moment method. The reliability analysis for the multiaxial strength limit state and the uniaxial strength limit state is performed and the results are compared with each other. This study concludes that the multiaxial failure criterion is a likely limit state to predict concrete failure strength under combined state of stresses and the reliability analysis results are compatible with the fact that the maximum compressive strength of concrete under biaxial compression state increases.

On dynamic response and economic of sinusoidal porous laminated nanocomposite beams using numerical method

  • Guixiao Xu;F. Ming
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.349-359
    • /
    • 2023
  • Dynamic response and economic of a laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the sinusoidal shear deformation theory (SSDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.

Structural response of composite concrete filled plastic tubes in compression

  • Oyawa, Walter O.;Gathimba, Naftary K.;Mang'uriu, Geoffrey N.
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.589-604
    • /
    • 2016
  • Kenya has recently experienced worrying collapse of buildings during construction largely attributable to the poor quality of in-situ concrete and poor workmanship. The situation in the country is further compounded by rapid deterioration of infrastructure, hence necessitating the development of alternative structural systems such as concrete filled unplasticized poly vinyl chloride (UPVC) tubes as columns. The work herein adds on to the very limited and scanty work on use of UPVC tubes in construction. This study presents the findings of experimental and analytical work which investigated the structural response of composite concrete filled UPVC tubes under compressive load regime. UPVC pipes are cheaper than steel tubes and can be used as formwork during construction and thereafter as an integral part of column. Key variables in this study included the strength of infill concrete, the length to diameter ratio (L/D) of the plastic tube, as well as the diameter to thickness ratio (D/2t) of the plastic tube. Plastic tubes having varying diameters and heights were used to confine concrete of different strengths. Results obtained in the study clearly demonstrate the effectiveness of UPVC tubes as a confining medium for infill concrete, attributable to enhanced composite interaction between the UPVC tube and infill concrete medium. It was determined that compressive strength of the composite column specimens increased with increased concrete strength while the same decreased with increased column height, albeit by a small margin since all the columns considered were short columns. Most importantly, the experimental confined concrete strength increased significantly when compared to unconfined concrete strength; the strength increased between 1.18 to 3.65 times the unconfined strength. It was noted that lower strength infill concrete had the highest confined strength possibly due to enhanced composite interaction with the confining UPVC tube. The study further proposes an analytical model for the determination of confined strength of concrete.

Modelling inelastic hinges using CDM for nonlinear analysis of reinforced concrete frame structures

  • Rajasankar, J.;Iyer, Nagesh R.;Prasad, A. Meher
    • Computers and Concrete
    • /
    • 제6권4호
    • /
    • pp.319-341
    • /
    • 2009
  • A new formulation based on lumped plasticity and inelastic hinges is presented in this paper for nonlinear analysis of Reinforced Concrete (RC) frame structures. Inelastic hinge behaviour is described using the principles of Continuum Damage Mechanics (CDM). Member formulation contains provisions to model stiffness degradation due to cracking of concrete and yielding of reinforcing steel. Depending on its nature, cracking is classified as concentrated or distributed. Concentrated cracking is accounted through a damage variable and its growth is defined based on strain energy principles. Presence of distributed flexural cracks in a member is taken care of by modelling it as non-prismatic. Plasticity theory supported by effective stress concept of CDM is applied to describe the post-yield response. Nonlinear quasi-static analysis is carried out on a RC column and a wide two-storey RC frame to verify the formulation. The column is subjected to constant axial load and monotonic lateral load while the frame is subjected to only lateral load. Computed results are compared with those due to experiments or other numerical methods to validate the performance of the formulation and also to highlight the contribution of distributed cracking on global response.

Seismic response assessment of high-strength concrete frames strengthened with carbon fiber reinforced polymers

  • Rahmdel, Javad Mokari;Vahid-Vahdattalab, Farzin;Shafei, Erfan;Zirakian, Tadeh
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.735-744
    • /
    • 2021
  • In recent years, the use of new materials and technologies with the aim of developing high-performing and cost-effective structures has greatly increased. Application of high-strength concrete (HSC) has been found effective in reducing the dimensions of frame members; nonetheless, such reduction in dimensions of structural elements in the most cases may result in the lack of accountability in the tolerable drift capacity. On this basis, strengthening of frame members using fiber reinforced polymers (FRPs) may be deemed as an appropriate remedy to address this issue, which albeit requires comprehensive and systematic investigations. In this paper, the performance of properly-designed, two-dimensional frames made of high-strength concrete and strengthened with Carbon Fiber Reinforced Polymers (CFRPs) is investigated through detailed numerical simulation. To this end, nonlinear dynamic time history analyses have been performed using the Seismosoft software through application of five scaled earthquake ground motion records. Unstrengthened (bare) and strengthened frames have been analyzed under seismic loading for performance assessment and comparison purposes. The results and findings of this study show that use of CFRP can be quite effective in seismic response improvement of high-strength-concrete structures.

이축인장을 받는 철근콘크리트 패널의 균열 거동 (Cracking Behavior of RC Panels under Biaxial Tension)

  • 곽효경;김도연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.599-606
    • /
    • 2003
  • An analytical model which can simulate the post-cracking nonlinear behavior of reinforced concrete (RC) members such as bars and panels subjected to uniaxial and biaxial tensile stresses is presented. The proposed model includes the description of biaxial failure criteria and the average stress-strain relation of reinforcing steel. Based on strain distribution functions of steel and concrete after cracking, average response of an embedded reinforcement, a criterion to consider the tension-stiffening effect is proposed using the concept of average stresses and strains. The validity of the introduced model is established by comparing the analytical predictions for reinforced concrete tension members with results from experimental studies. Finally, correlation studies between analytical results and experimental data from biaxial tension test are conducted with the objective to establish the validity of the proposed models and identify the significance of various effects on the response of biaxially loaded reinforced concrete panels.

  • PDF

Damage evaluation of seismic response of structure through time-frequency analysis technique

  • Chen, Wen-Hui;Hseuh, Wen;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • 제9권2호
    • /
    • pp.107-127
    • /
    • 2022
  • Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.

Validation study on numerical simulation of RC response to close-in blast with a fully coupled model

  • Gong, Shunfeng;Lu, Yong;Tu, Zhenguo;Jin, Weiliang
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.283-300
    • /
    • 2009
  • The characteristic response of a structure to blast load may be divided into two distinctive phases, namely the direct blast response during which the shock wave effect and localized damage take place, and the post-blast phase whereby progressive collapse may occur. A reliable post-blast analysis depends on a sound understanding of the direct blast effect. Because of the complex loading environment and the stress wave effects, the analysis on the direct effect often necessitates a high fidelity numerical model with coupled fluid (air) and solid subdomains. In such a modelling framework, an appropriate representation of the blast load and the high nonlinearity of the material response is a key to a reliable outcome. This paper presents a series of calibration study on these two important modelling considerations in a coupled Eulerian-Lagrangian framework using a hydrocode. The calibration of the simulated blast load is carried out for both free air and internal explosions. The simulation of the extreme dynamic response of concrete components is achieved using an advanced concrete damage model in conjunction with an element erosion scheme. Validation simulations are conducted for two representative scenarios; one involves a concrete slab under internal blast, and the other with a RC column under air blast, with a particular focus on the simulation sensitivity to the mesh size and the erosion criterion.