• Title/Summary/Keyword: structural proteins

Search Result 518, Processing Time 0.024 seconds

Unfolded Histidine-Tagged Protein is Immobilized to Nitrilotriacetic Acid-Nickel Beads, But Not the Nickel-Coated Glass Slide

  • Cho Min-Ho;Ahn Sun-Young;Park Heon-Yong
    • Genomics & Informatics
    • /
    • v.4 no.3
    • /
    • pp.133-136
    • /
    • 2006
  • The adsorption of proteins on the surface of glass slides is essential for construction of protein chips. Previously, we prepared a nickel-coated plate by the spin-coating method for immobilization of His-tagged proteins. In order to know whether the structural factor is responsible for the immobilization of His-tagged proteins to the nickel-coated glass slide, we executed a series of experiments. First we purified a His-tagged protein after expressing the vector in E. coli BL21 (DE3). Then we obtained the unfolding curve for the His-tagged protein by using guanidine hydrochloride. Fractions unfolded were monitored by internal fluorescence spectroscopy. The ${\Delta}G_{H20}$ for unfolding was $2.27kcal/mol{/pm}0.52$. Then we tested if unfolded His-tagged proteins can be adsorbed to the nickel-coated plate, comparing with $Ni^{2+}-NTA$ (nitrilotriacetic acid) beads. Whereas unfolded His-tagged proteins were adsorbed to $Ni^{2+}-NTA$ beads, they did not bind to the nickel-coated plate. In conclusion, a structural factor is likely to be an important factor for constructing the protein chips, when His-tagged proteins will immobilize to the nickel-coated slides.

The Hsp90 chaperone machinery: from structure to drug development

  • Hahn, Ji-Sook
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.623-630
    • /
    • 2009
  • Hsp90, an evolutionarily conserved molecular chaperone, is involved in the folding, stabilization, activation, and assembly of a wide range of 'client' proteins, thus playing a central role in many biological processes. Especially, several oncoproteins act as Hsp90 client proteins and tumor cells require higher Hsp90 activity than normal cells to maintain their malignancy. For this reason, Hsp90 has emerged as a promising target for anti-cancer drug development. It is still largely unknown how Hsp90 can recognize structurally unrelated client proteins. However, recent progress in structural studies on Hsp90 and its interaction with various co-chaperones has broadened our knowledge of how the Hsp90 ATPase activity, which is essential for its chaperone function, is regulated and coupled with the conformational changes of Hsp90 dimer. This review focuses on the roles of various Hsp90 co-chaperones in the regulation of the Hsp90 ATPase cycle, as well as in the selection of client proteins. In addition, the current development of Hsp90 inhibitors based on the structural information will be discussed.

PreSMo Target-Binding Signatures in Intrinsically Disordered Proteins

  • Kim, Do-Hyoung;Han, Kyou-Hoon
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.889-899
    • /
    • 2018
  • Intrinsically disordered proteins (IDPs) are highly unorthodox proteins that do not form three-dimensional structures under physiological conditions. The discovery of IDPs has destroyed the classical structure-function paradigm in protein science, 3-D structure = function, because IDPs even without well-folded 3-D structures are still capable of performing important biological functions and furthermore are associated with fatal diseases such as cancers, neurodegenerative diseases and viral pandemics. Pre-structured motifs (PreSMos) refer to transient local secondary structural elements present in the target-unbound state of IDPs. During the last two decades PreSMos have been steadily acknowledged as the critical determinants for target binding in dozens of IDPs. To date, the PreSMo concept provides the most convincing structural rationale explaining the IDP-target binding behavior at an atomic resolution. Here we present a brief developmental history of PreSMos and describe their common characteristics. We also provide a list of newly discovered PreSMos along with their functional relevance.

Monoclonal antibodies against structural proteins of bovine viral diarrhea virus (소 설사병 바이러스 구조단백에 대한 단크론항체 성상에 대한 연구)

  • Kweon, Chang-hee;Zee, Yuan Chun;Woo, Hee-jong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 1992
  • Monoclonal antibodies against structural proteins of bovine viral diarrhea virus(BVDV) were derived by classical hybridoma techniques. These antibodies were characterized by serum neutralization, immunoblotting and immunoprecipitation. The neutralizing monoclonal antibody reacted with the 56kd to 54kd(M.W.) viral protein in western blotting and immunoprecipitation analysis. Although there was no neutralizing activity, another monoclanal antibody reacted with the 45kd protein by immunoprecipitation and with both the 45kd and 36kd proteins in immunoblotting analysis. respectively. Densitometer scanning of purified BVDV and the immunopreipitation of whole virus particles with neutralizing monoclonal antibody revealed the presence of more than twelve viral polypeptides. Although no possible precursor form of protein was identified with the neutralizing monoclonal antibody. the presence of intact virion was detected in the infected cell supernatant immediatelty after pulse labeling, indicating rapid translational processing as well as packaging of the virus. The partial peptide mapping of 45kd and 36kd proteins with Staphylococcus aureus V 8 protease showed that these two proteins are related.

  • PDF

Structure-based Functional Discovery of Proteins: Structural Proteomics

  • Jung, Jin-Won;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • The discovery of biochemical and cellular functions of unannotated gene products begins with a database search of proteins with structure/sequence homologues based on known genes. Very recently, a number of frontier groups in structural biology proposed a new paradigm to predict biological functions of an unknown protein on the basis of its three-dimensional structure on a genomic scale. Structural proteomics (genomics), a research area for structure-based functional discovery, aims to complete the protein-folding universe of all gene products in a cell. It would lead us to a complete understanding of a living organism from protein structure. Two major complementary experimental techniques, X-ray crystallography and NMR spectroscopy, combined with recently developed high throughput methods have played a central role in structural proteomics research; however, an integration of these methodologies together with comparative modeling and electron microscopy would speed up the goal for completing a full dictionary of protein folding space in the near future.

Superinfection exclusion of BVDV occurs not only at the level of structural protein -dispensable viral replication but also at the level of structural protein -required viral entry

  • Lee Y.-M.;Frolov I.;Rice C.M.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.66-77
    • /
    • 2000
  • For a variety of viruses, the primary virus infection has been shown to prevent superinfection with a homologous secondary virus; however, the mechanism of exclusion has not been clearly understood. In this work, we demonstrated that BVDV -infected MDBK cells were protected from superinfection with a homologous superinfecting BVDV, one of the positive-sense RNA pestiviruses, but not with an unrelated rhabdovirus, such as vesicular stomatitis virus. Once superinfection exclusion was established by a primary infection with BVDV, the transfected infectious BVD viral RNA genome was shown to be competent for viral translation, but not viral replication. In addition, our results also demonstrated that upon superinfection, the. viral RNA genome of viral particles was not transferred into the cytoplasm of BVDV -infected cells. Using newly developed system involving rapid generation of the MDBK cells expressing BVD viral proteins, we subsequently found that expression of the viral structural proteins was dispensable for the block occurring at the level of viral RNA replication, but required for the exclusion at the level of viral entry step. Altogether, these findings provide evidence that the superinfection exclusion of BVDV occurs not only at the level of viral replication in which the viral replicase are involved, but also at the level of viral entry with which the viral structural proteins are associated, and that a cellular factor(s) play an essential role in this process.

  • PDF

Synthesis of Tetrapeptide Derived from Skin Structural Protein Sequence and Identification of Skin Anti-aging Effect

  • Kang, Sang Moon;Joun, Yong-Seung;Lee, Kee-Young;Kang, Hyun;Lee, Sung-Gyu
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.231-238
    • /
    • 2021
  • Several structural proteins present in keratinocytes of the skin are known to play an important role in the formation of epidermal tissue and barrier function, and the absence of structural proteins in keratinocytes causes various skin diseases. In this study, 42 types of tetrapeptides derived from the sequence of Loricrin, a kind of terminally differentiating structural protein, were synthesized, and skin anti-aging properties were measured by measuring the elastase inhibition, proliferation of skin cells. The anti-aging efficacy was verified and, based on this, it succeeded in selecting one of the most excellent peptides. It is expected that the selected tetrapeptide can be used as a raw material for various cosmetics and quasi-drugs based on anti-aging and skin cell proliferation effects.

Transcription, Translation, and Immunolocalization of ODVP-6E/ODV-E56 and p74 Proteins: Two Highly Conserved ODV-associated Envelope Proteins of Choristoneura fumiferana Granulovirus

  • Rashidan, Kianoush Khajeh;Nassoury, Nasha;Giannopoulos, Paresa N.;Guertin, Claude
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.65-70
    • /
    • 2005
  • Choristoneura fumiferana granulovirus (ChfuGV) infection results two types of enveloped virions: Occlusion-derived virus (ODV) and budded virus (BV). Structural proteins ODVP-6E/ODV-E56 and p74 are two major conserved ODV-associated proteins that may be involved in the initiation of viral infection cycle in susceptible host insect larvae. This study presents the characterization of ChfuGV odvp-6e/odv-e56 and p74 transcription and translation as well as immunolocalization of these proteins in the occluded ChfuGV virion. Our results revealed that the transcription of odvp-6e/odv-e56 and p74 genes, both, start at 24 hours post infection (h p.i.). Using monospecific polyclonal antibodies made against ODVP-6E/ODV-E56 and p74 we demonstrated that these proteins are both expressed late in infection (24 h p.i.). Immunogold labeling using antisera against ODVP-6E/ODV-E56 and p74 proteins demonstrated that ODVP-6E/ODV-E56 and p74 proteins are both associated with the ODV envelop of ChfuGV.

Crystal Structure of p97-N/D1 Hexamer Complexed with FAF1 UBX Domain

  • Wonchull Kang
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.348-352
    • /
    • 2023
  • p97, a universally conserved AAA+ ATPase, holds a central position in the ubiquitin-proteasome system, orchestrating myriad cellular activities with significant therapeutic implications. This protein primarily interacts with a diverse set of adaptor proteins through its N-terminal domain (NTD), which is structurally located at the periphery of the D1 hexamer ring. While there have been numerous structural elucidations of p97 complexed with adaptor proteins, the stoichiometry has remained elusive. In this work, we present the crystal structure of the p97-N/D1 hexamer bound to the FAF1-UBX domain at a resolution of 3.1 Å. Our findings reveal a 6:6 stoichiometry between the p97 hexamer and FAF1-UBX domain, deepening our understanding from preceding structural studies related to p97-NTD and UBX domain-containing proteins. These insights lay the groundwork for potential therapeutic interventions addressing cancer and neurodegenerative diseases.

Production of Recombinant Proteins as Immuno-Analytical Markers of Genetically-Modified Organisms (GMO)

  • Hwang, Ok-Hwa;Park, Hyuk-Gu;Paek, Eui-Hwan;Paek, Se-Hwan;Park, Won-Mok
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.783-788
    • /
    • 2004
  • Marker proteins of genetically-modified organisms (GMO) and their antibodies were prepared and characterized as major components of an analytical system. We selected two GMO markers, neomycin phosphotransferase II and 5- enolpyruvylshikimate-3-phosphate synthase, and produced them from E. coli employing genetic recombination technology. After purification, their structural conformation and binding affinities to the respective antibodies were characterized. The results showed that the recombinant proteins were identical with commercially obtained reference proteins. We further used them as immunogens to raise polyclonal antibodies capable of discriminating GMO containing protein from non-GMO. Well-characterized marker proteins and antibodies will be valuable as immunoreagents in constructing analytical systems such as biosensors and biochips to measure quantities of GMO.