• Title/Summary/Keyword: structural member behavior

Search Result 400, Processing Time 0.029 seconds

Flexural Strength Estimation of Half-Depth Precast Concrete Composite Slab Manufactured by the Long-Line Method (롱라인 공법으로 제작한 반단면 프리캐스트 콘크리트 합성 슬래브의 휨강도 평가)

  • Choi, Jin-Woo;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.48-56
    • /
    • 2013
  • Prestressed concrete (PSC) members are readly available in civil engineering applications due to the convenience of construction and easy of quality control in the manufacturing process of the member. Especially, half-depth precast concrete composite slab, which is one of the PSC flexural members is developed recently using the long-line method. The half-depth precast concrete composite slabs are composed of the precast concrete and the in-situ concrete placed at the site. In this paper, we present the results of experimental investigations pertaining to the pretensioning efficiency and the flexural behavior of half-depth precast concrete composite slab which is made of precast PSC manufactured by the long-line method. In the long-line method, the pretensioned precast member is manufactured simultaneously, by tensioning tendons at once. In addition, we suggest the equation that can estimate the flexural strength of half-depth precast concrete composite slab reasonably by considering the effects of rebar embedded in the precast PSC flexural member.

Experiments on Flexural Performance of Composite Members Strengthened by External Steel Plates (외부 강재 보강으로 구성한 합성 부재의 휨 성능에 대한 실험)

  • Hwang, Byung-Hun;Shin, Jin-Won;Jeon, Jae-Ho;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.143-150
    • /
    • 2022
  • This paper presents an experimental study on the flexural performance of concrete members strengthened with external steel plates for the purpose of improving seismic performance. In order to strengthen the structure, a strengthening method was applied that wraps the walls and columns with steel members. The partial section of the wall with the longest span in the structure was manufactured in real size and the strengthening effect was confirmed by performing a static load test. As a result of the experiment, it was confirmed that the strengthened section exhibited sufficient flexural performance satisfied to the seismic requirements, but the behavior until failure was not obtained because of actuator capacity. It was confirmed that the strengthened member resists the out-of-plane moment with a composite behavior. It was verified that the stiffness and load carrying capacity of the strengthened member were improved compared to the non-strengthened member by displacement and strain measurements.

Ductility Demand Estimation Methods at Structural System Level for Seismic Design of Structures

  • Lee, Dong-Guen;Yun, Chung-Bang;Song, Jong-Keol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.143-150
    • /
    • 1996
  • The ductility demand for seismic design of a single degree of structure or an individual structural member can be determined easily. However, there is no established method to determine the ductility demand far a structural system. The object of this paper is to develop a method for the estimation of the ductility demand far structural systems, in which the inelastic behavior can be taken into account properly. The validity of the proposed method has been examined far several cases with different structures and different earthquake excitations. The method is also compared with two alternative methods.

  • PDF

Software for biaxial cyclic analysis of reinforced concrete columns

  • Shirmohammadi, Fatemeh;Esmaeily, Asad
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.353-386
    • /
    • 2016
  • Realistic assessment of the performance of reinforced concrete structural members like columns is needed for designing new structures or maintenance of the existing structural members. This assessment requires analytical capability of employing proper material models and cyclic rules and considering various load and displacement patterns. A computer application was developed to analyze the non-linear, cyclic flexural performance of reinforced concrete structural members under various types of loading paths including non-sequential variations in axial load and bi-axial cyclic load or displacement. Different monotonic material models as well as hysteresis rules, were implemented in a fiber-based moment-curvature and in turn force-deflection analysis, using proper assumptions on curvature distribution along the member, as in plastic-hinge models. Performance of the program was verified against analytical results by others, and accuracy of the analytical process and the implemented models were evaluated in comparison to the experimental results. The computer application can be used to predict the response of a member with an arbitrary cross section and various type of lateral and longitudinal reinforcement under different combinations of loading patterns in axial and bi-axial directions. On the other hand, the application can be used to examine analytical models and methods using proper experimental data.

Anchorage Behavior of Bi Prestressed Concrete Girders (프리스트레스트 콘크리트거더의 정착구 거동 분석)

  • Lee, Pil-Goo;Kim, Choong-Eon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.361-364
    • /
    • 2008
  • This study was performed to estimate the anchorage behavior for Bi Prestressed Concrete Girder(Bicon girder) which could introduce effectively prestressed forces into concrete girders. A bicon girder is manufactured by means of introducing pure bending moment that prestress simultaneously the compressive member(steel bar) and the tensile member(steel tendon). Therefore, the steel bar and the steel tendon must be unified in both ends and compressive and tensile force be offset. Anchorage dimension of 6 test specimens was designed under PTI specification which defined maximum stress and deformation to estimate structural behavior. Test results showed that the stress and the deformation of anchorage were within limits if the steel bar behaviored elastically.

  • PDF

Experimental Study on the Inelastic Behavior of Single-layer Latticed Dome with New Connection (새로운 접합상세를 가진 단층 래티스 돔의 비탄성 거동에 관한 실험연구)

  • Kim, Myeong Han;Oh, Myoung Ho;Jung, Seong Yeol;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • This study discusses the inelastic behavior of single-layer latticed dome, which consists of a tubular truss member and newly proposed joint sections, through a loading test on a scaled-down structure. The loading test was performed under displacement control conditions, using loading transfer system for the same value of point loads on all joints. The maximum applied load was nearly 1.6 times of the design load, and structural failure occurred after exceeding the compressive yielding in some members. Structural displacement was maintained up to the limit of the oil jack. The behavior of the latticed dome from the loading test was analyzed according to the order of loading steps.

A force-based element for direct analysis using stress-resultant plasticity model

  • Du, Zuo-Lei;Liu, Yao-Peng;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.175-186
    • /
    • 2018
  • The plastic hinge method and the plastic zone method are extensively adopted in displacement-based elements and force-based elements respectively for second-order inelastic analysis. The former enhances the computational efficiency with relatively less accurate results while the latter precisely predicts the structural behavior but generally requires more computer time. The displacement-based elements receive criticism mainly on plasticity dominated problems not only in accuracy but also in longer computer time to redistribute the forces due to formation of plastic hinges. The multi-element-per-member model relieves this problem to some extent but will induce a new problem in modeling of member initial imperfections required in design codes for direct analysis. On the contrary, a force-based element with several integration points is sufficient for material yielding. However, use of more integration points or elements associated with fiber section reduces computational efficiency. In this paper, a new force-based element equipped with stress-resultant plasticity model with minimal computational cost is proposed for second-order inelastic analysis. This element is able to take the member initial bowing into account such that one-element-per-member model is adequate and complied with the codified requirements of direct analysis. This innovative solution is new and practical for routine design. Finally, several examples demonstrate the validity and accuracy of the proposed method.

Behavior of Composite RCS Beam-Column Joint Subjected to Cyclic Loading (반복하중을 받는 철근콘크리트 기둥과 철골보 합성구조의 접합부 성능에 관한 연구)

  • Cho, Pil-Kyu;Kim, Sang-Jun;Her, Jun;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.577-581
    • /
    • 1998
  • Recent trends in the construction of building frame feature the increase use of composite steel concrete members functioning together in what terms of mixed structural systems. One of such systems, RCS(reinforced concrete column and steel beam) system, is known to make use of type of member in the most efficient manner to maximize the structural and economic benifits. Based on the results, joint behavior and design were described in terms of two primary modes of failure ; joint panel shear and vertical bearing. In test specimen, joint deformation is observed at internal region greater than at external region.

  • PDF

Structural Behavior of Approach Bridge in the Incheon Bridge due to Pre-Jacking Force (선보정하중도입에 따른 인천대교 접속교 거동특성)

  • Song, Jong-Young;Song, Chang-Hee;Shim, Ih-Soo;Kim, Yeong-Seon;Shin, Hyun-Yang;Yoon, Man-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.534-537
    • /
    • 2006
  • The jacking of cantilever before key segment closure has been introduced to offset the long term forces caused by creep and shrinkage. In this paper, the behavior of structural system with the jacking force in approach bridge of Incheon Bridge was reviewed. The introduction of jacking force effectively offset the long term horizontal forces and allows economic substructure member design.

  • PDF

An Experimental Study on the Behavior of Full Scaled System Columns Reinforced with Steel Sheet Forms and Angles (강재 영구거푸집을 사용한 실대 크기의 시스템 기둥에 관한 실험적 연구)

  • Kang, Ji-Yeon;Lee, Su-Jin;Yoon, Yeong-Ho;Kim, Hyunh-Geun;Lee, Chang-Nam;Kim, Sang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.21-24
    • /
    • 2006
  • In recent, there are a lot of problems such as shortage of construction workers, complicate progress of work and so on under RC construction. To solve these problems, the construction methods without form-work are used in the main structural members - beam, slab and stairs. However, there isn't yet form-workless system for columns. The purpose of this study was to experimentally evaluate the structural behavior of full scaled no-form system columns reinforced with steel sheet forms and angles. The main variables are 1) comparison of concrete member strength with and without reinforcement, 2) effect of L-angle.

  • PDF