• Title/Summary/Keyword: structural member behavior

Search Result 398, Processing Time 0.02 seconds

Estimation of Early-Age Cracking of Reinforced Concrete Walls (철근콘크리트 벽체의 초기 균열 거동에 대한 연구)

  • Kwak Hyo-Gyoung;Ha Soo-Jun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.898-905
    • /
    • 2006
  • In the present paper, for a quantitative assessment of early-age cracking in an RC wall, an improved analytical model is proposed. First of all, a three-dimensional finite element model for the analysis of stresses due to hydration heat and differential drying shrinkage is introduced. A discrete steel element derived using the equivalent nodal force concept is used to simulate reinforcing steels, embedded in a concrete matrix. In advance, to quantitatively calculate the cracking potential, an analytical model that can estimate the post-cracking behavior in an RC tension member is proposed Subsequent comparisons. of analytical results with test results verify that the combined use of both the finite element model for the stress analysis as well as the analytical model for the estimation of the post-cracking behavior in an RC tension member make it possible to accurately predict the cracking ,behavior of RC walls.

  • PDF

Analysis of Hysteretic Behavior of R/C Members subjected to Load Reversals - Single component model having the finite size of plastic regions - (반복하중을 받는 철근콘크리트 부재의 이력거동 해석 -유한한 소성력을 갖는 일원성분 모델을 사용하여-)

  • 김윤일;이리형;서수연;천영수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.6-11
    • /
    • 1990
  • Inelastic behavior of reinforced concrete members is very complex and affected by many factors. Therefore, though using the finite element method which is good to predict the response of R/C member, it has to be proceeded to model these factors appropriately which have influence on the behavioral characteristics of reinforced concrete members. The proposed model consists of the physical single component model having the finite size of plastic regions and the hysteretic rules, by regressing experimental data, which can idealize the hysteretic behavior of R/C member under inelastic cyclic loads. This study confirms the accuracy of the developed analytical model through comparison with the test results of R/C members having a variety of shear-to-depth ratio and maximum shear stress.

  • PDF

Seismic Behavior of Concrete-Filled HSS Bracing Members Reinforced by Rib (리브 보강된 콘크리트 충전 HSS 가새부재의 이력 거동)

  • Han, Sang Whan;Yeo, Seung Min;Kim, Wook Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.53-62
    • /
    • 2005
  • The purpose of this study is to improve the seismic behavior of the bracing members. Lee and Goel's (1987) concrete filling in the hollow structural section (HSS) reduced the severity of local buckling and increased the fracture life. However, concrete filling in the HSS did not prevent the occurrence of local buckling in the midsection of the bracing member, which resulted in continuous strength degradation. This study investigated the seismic behavior of the concrete-filled HSS bracing member, which is reinforced by ribs in the midsection of the bracing member. The main variable of the specimens is rib length. The test results showed that buckling mode, cyclic compression strength, and energy dissipation capacity of the bracing members were affected by rib length. Specimen reinforced with ribs with a length of 63% had better structural performance.

Structural Safety Evaluation for Static Strength of Thin Plate RC Member with High Strength Concrete (고강도 콘크리트를 적용한 얇은 RC 판부재의 정적 강도 안전성 평가)

  • Hwang, Hoon-Hee;Park, Sung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.69-75
    • /
    • 2017
  • Structural safety evaluation for static strength of thin plate RC member with high strength concrete is conducted in this study. Static strengths were predicted and compared with the experimental values. Predicted values were calculated by the evaluation formula based on the punching shear behavior and the yield line theory which can appear in the plate members. Static load tests were carried out for the specimens with high strength concrete and the test results were compared with the required performance in design. The comparison results show that the specimens with high strength concrete have sufficient structural safety for flexural and punching shear performance required in design. High strength concrete specimens exhibited excellent strength despite their small thickness. The range of concrete strengths applied in this study was about 60 MPa to 100 MPa.

Formulation of Fire Reliability Assessment Method for Structural Strength (화재 구조강도에 대한 신뢰성 평가방법의 정립)

  • 양영순;유원선;이상엽
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.161-168
    • /
    • 2004
  • This study describes the behavior and failure probability of basic structural member in case of fire for the research of safety assessment on onshore structure. Fire safety assessment can be done by comparing fire resistance of members with fire severity of heat load For more Practical applications, the commercial structural analysis program is linked with the in-house code and gets the limiting temperature by analyzing structural strength of member with elasto-plastic analysis and large deflection analysis. AFOSM method is utilized to obtain the failure probability against the fire. The examples of rather simple structures such as beams and plates are applied to explain and verify the procedure of fire safety assessment.

  • PDF

Structural Behavior of Sandwich Type GFRP Arch and Field Applicability (샌드위치형 GFRP 아치의 구조적 거동 및 현장 적용성)

  • Hwang, Dae-Won;Kim, Kwang-Woo;Kim, Yong-Seong;Yeon, Kyu-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.85-93
    • /
    • 2018
  • This study investigated the structural behavior and field applicability of sandwich type GFRP arches with polymer mortar in core. As a result, in case of crack loading and failure loading, total strains at crown were the highest; the fracture strain at crown was 0.01690, which is 4.2 times greater than the fracture strain (0.004) of cement concrete. The 3 % deflection load was 17.42 kN, the flexural strength was $163.98{\times}10^{-3}GPa$, and the flexural elastic modulus was 11.884 GPa. From load-deflection relationship up to 3.5 % deflection, 3D analysis results and experimental values were observed to be almost identical. It was considered reasonable to set a deflection rate limit to be 3 % for structural safety purpose. The standard external flexural strength of semicircular arch used in this study was approximately 2.64 times higher than that of hume pipe (2 type standard) and tripled composite pipe. The external pressure strength at fracture was approximately 1.57 times higher than that of hume pipe. It was confirmed that the implementing semicircular arch had mechanically more advantage than the circular pipe. Optimum member thickness was 8~53 mm according to arch radius of 450~1,800 mm and cover depth of 2~10 m. It was found that the larger strength could be obtained even if the thickness of member was smaller than that of concrete structure. In field application study, figures and equations were derived for obtaining applicable cover depth and optimum member thickness according to loading conditions. These would be useful data for design and manufacture of sandwich type semicircular arch.

Structural Behavior of Newly Developed Cold-Formed Steel Sections(I) - Compressive Behavior (신형상 냉간성형 단면의 구조적 거동(I) - 압축거동)

  • Park, Myeung Kyun;Kim, Han Sik;Chung, Hyun Suk;Kwon, Yunng Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.349-356
    • /
    • 2002
  • Cold-Formed C-section and Lipped C-section are commonly used as structural members of steel houses in Korea. Both are made of SGC41 steel. However, special Cold-Formed Sections with unique cross sectional shape have been developed and widely used in advanced countries. This research focused on the newly developed thin-walled Cold-Formed Sections which possess not only high strength and stiffness but also other advantages in construction. A series of compression tests was conducted to investigate the structural behavior of a compression member, including its load carrying capacity. Test results were compared with analytical study results.

Structural Effect Evaluation of an Apartment Building Due to the Water Tank under Earthquake Load (지진발생시 아파트 옥탑층 물탱크의 구조적 영향평가)

  • 정은호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.29-40
    • /
    • 1999
  • High-rise building for dwelling has many factors to be considered in structural aspects. In particular, the higher the building, the bigger the lateral loads such as wind and earthquake due to its dynamic characteristics. Unlike the wind load, the earthquake load, even if the shape of the structures are similar, depends on structural characteristics and it is difficult to predict. For an apartment building, the water tank in the penthouse, due to its heavy weight, changes the behavior of a building when the earthquake occurs. The purpose of this study is to determine how the water tank affects the behavior of an apartment building when earthquake occurs. Dynamic analysis was accomplished on two cases - 1) water tank is considered 2) water tank is not considered - to understand how it affects the behavior of a high-rise apartment building. Structural design was accomplished to understand how the water tank and the peak acceleration affects each structural member. The effect of the water tank on the response of structure was large. Elsewhere the water tank has no effect on the design of a strutural member. However some structural members were affected when the peak acceleration of an earthquake is 0.4g.

  • PDF

Buckling Behavior of Pultruded Composite Structural Member (인발성형 복합소재 구조부재의 좌굴특성 분석)

  • 이성우;김현정
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.67-74
    • /
    • 2000
  • Recently western countries are now beginning to use ACM (Advanced Composite Material) in the construction industry. Compared with conventional construction materials, ACM possesses many advantages such as light-weight, high-strength, corrosion resistant properties, etc. Among other fabrication process of ACM, pultrusion is one of the promising one for civil infrastructure application. In this paper, the structural characteristics of pultruded glass fiber reinforced composite structural member of angle and tube type were studied. Experiments for compression were performed for those members along with finite element buckling analysis with ABAQUS. The experimental and analytic results were compared each other and they were also compared with predicted values using coded formulae.

  • PDF

A Study on the Evaluation Method to Flexural-bonding Behavior of FRP-Rebar Concrete Member (FRP를 보강근으로 사용한 콘크리트 부재의 휨-부착 거동 평가방법에 관한 연구)

  • Choi, So-Yoeng;Choi, Myoung-Sung;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.149-156
    • /
    • 2021
  • FRP has been proposed to replace the steel as a reinforcement in the concrete structures for addressing the corrosion issue. However, FRP-Rebar does not behave in the same manner as steel because the properties of FRP are different. For example, FRP-Rebar has a high tensile strength, low stiffness, and linear elastic behavior which results in a difference bonding mechanism to transfer the load between the reinforcement and the surrounding concrete. Therefore, bonding behavior between FRP-Rebar and concrete has to be investigated using the bonding test. So, Pull-out test has been used to estimate bond behavior because it is simple. However, the results of pull-out test have a difference with flexural-boding behavior of FRP-Rebar concrete member. So, it is needed to evaluate the real fleuxral-bonding behavior. In this study, the evaluation method to flexural-bonding behavior of FRP-Rebar concrete member was reviewed and compared. It was found that the most accurate evaluation method for the fleuxral-bonding behavior of FRP-Rebar concrete member was splice beam test, however, the size and length of specimen have to increase than other test method and the design and analysis of splice beam is complex. Meanwhile, characteristics of concrete could be reflected by using arched beam test, unlike hinged beam test which is based on the ignored change of moment arm length in equilibrium equation. However, the possibility of shear failure exists before the flexural-bonding failure occur.