• Title/Summary/Keyword: structural member behavior

Search Result 398, Processing Time 0.028 seconds

Resistance of Web-Separated Diagrid Nodes Subjected to Cyclic Loading (반복하중에 대한 웨브전이형 다이아그리드 노드의 구조적 특성)

  • Kim, Young Ju;Jung, In Yong;Ju, Young K.;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.257-266
    • /
    • 2009
  • The results of the analysis of the structural behavior of diagrid nodes that were subjected to cyclic loads such as wind and earthquakes was not fully understood due to difficulties in considering the welding type. In this study, diagrid nodes were tested to determine their behavior when they are subjected to seismic or wind loads. Five specimens were designed and fabricated. The corresponding test parameters were the welding type for each point and the length of the overlap of the side stiffener and the brace web. Tensile force was applied to one diagrid brace member, and compression force was applied to the other diagrid brace member. Cyclic loading was applied until the failure. The test showed that failures are due to axial stress from axial force and the additional bending moment of the two combined axial forces that have different directions. Tensile failure was observed from the tensile force, and local buckling was observed from the compressive force at the flange of the brace member. In addition, the welding type and the length overlap affected the initial stiffness, the yielding stress, and the energy absorption of the diagrid node.

A Study on the Relationship between Operational Method and Performance of Web Sites - Effect of CSR on Employees' Organizational Commitment and Productive behaviors - (인터넷 웹사이트 운영전략 및 성과 간 관계 연구 - 기업의 사회적 책임(CSR)이 조직 구성원의 조직몰입 및 생산적 행동에 미치는 영향을 중심으로 -)

  • Park, Jong-Pil;Park, Mi;Kim, Hyung-Wook
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.1
    • /
    • pp.67-84
    • /
    • 2015
  • Purpose: By analyzing what kind of organizational reaction is shown by employees to corporate social responsibility (CSR), I want to propose a plan to maximize achievement(organizational commitment and productive behavior) within corporation. Methods: Regression analysis is used to analyze relationship between CSR awareness and achievement within corporation. Then structural equation model is used to check control effect of corporate member's participation in CSR. Results: It is proved that employee's CSR awareness has positive relationship with organizational commitment and productive behavior. It is shown that when employees have participated in CSR programs directly, effectiveness of relationship was especially higher for Organizational Citizenship Behavior (OCB) and innovative behavior. Conclusion: In order to increase organizational commitment and productive behavior of employees, corporation's social responsibility management, in other words ethical management must be used so their motivation can be increased and so they can directly participate in CSR programs which will increase effectiveness of organization.

A Study on the Shape Modeling and Structural Stability of an Icosahedron-typed Modular Dome (정20면체 모듈러 돔의 형상모델링 및 구조안정성에 관한 연구)

  • Shon, Su-Deok;Woo, Hyo-Jun;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.51-59
    • /
    • 2015
  • In this study, a shape design and an analysis considering structural stability were investigated to develop an icosahedron-based hemispherical modular dome. To design this modular dome, a program that can perform icosahedron shape modeling, modularization of joint connection members, and the analysis of structural stability was developed. Furthermore, based on the adopted numerical model, the eigen buckling mode, unstable behavior characteristics according to load vector, and the critical buckling load of the modular dome under uniformly distributed load and concentrated load were analyzed, and the resistance capacities of the structure according to different load vectors were compared. The analysis results for the modular dome suggest that the developed program can perform joint modeling for shape design as well as modular member design, and adequately expressed the nonlinear behaviors of structured according to load conditions. The critical buckling load results also correctly reflected the characteristics of the load conditions. The uniformly distributed load was more advantageous to the structural stability than concentrated load.

Evaluation Study on the Mechanical and Thermal Properties of High Strength Structural Steel at High Temperature (고강도 구조용 강재의 고온물성 평가연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.72-79
    • /
    • 2013
  • Recently, building constructions have been developed toward high-rise, long span, and multi-complexed using the high strength materials, optimized section. But the structural behavior of steel structural members built with a high strength steel at fire condition is not clarified because of lacking of information of related references such as mechanical and thermal properties at high temperature situation. In this paper, to evaluate the structural stability of member or frame of steel framed building at fire situation through the engineering method, the mechanical and thermal experimental coupon tests have conducted at various high temperatures and the comparison to those of ordinary strength steels were done.

Strength Characteristics of Passive Fire Protection Material Applied Structural Members on Fire Load (수동화재보호 재료가 적용된 구조부재의 화재하중에 대한 강도 특성)

  • Jo, Sang Chan;Yu, Seung Su;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • In offshore installations, fires cause the structure to lose its rigidity and it leads to structural integrity and stability problems. The Passive Fire Protection (PFP) system slows the transfer rate of fire heat and helps prevent the collapse of structures and fatality. Especially, intumescent epoxy coating is widely used in the offshore industry, and not only is the material cost expensive, but it also takes a lot of time and cost for construction. Several studies have been conducted on the efficient application and optimal design of the PFP system. However, the mechanical properties and the strength of the PFP material have not been considered. In addition, researches on the correlation between the thickness of PFP and the structural behavior were insufficient. Therefore, this study aims to analyze the thermal and mechanical effects of the PFP on the structure when it is applied to the structural member. In particular, it is intended to resolve the change in strength characteristics of the structural members as the thickness of the PFP increases.

Flexural Behavior of RC Beams Using High-Strength Reinforcement for Ductility Assessment (고강도 철근을 활용한 휨 부재의 연성거동에 관한 연구)

  • Kwon, Soon-Beom;Yoon, Young-Soo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.1 s.4
    • /
    • pp.119-126
    • /
    • 2002
  • This paper presents the appropriateness for using high strength reinforcement according to the use of high strength concrete. Nine flexural tests were conducted on full-scale beam specimens according to the concrete strength, reinforcement strength and reinforcement ratio as main variable. The structural behavior was analyzed due to the flexural strength, stress-strain curve, deflections at yielding and fracture point, crack appearance and ductility factor. The member with high-strength reinforcements showed large deflection at yielding point and this was analyzed as a main cause to decrease the ductility factor. Structural behavior after yielding point, however, showed similarity to behavior of members with normal strength reinforcements of same stiffness. It was found that in the case of using reinforcements of $5500kgf/cm^2$ strength, the combination with concrete of $800kgf/cm^2$ strength demonstrated the great appropriateness which can increase the flexural capacity without any reduction of maximum reinforcement ratio.

Flexural Behavior of RC Beam Made of Slurry Infiltrated Fiber Concrete (슬러리 충전 강섬유 콘크리트로 제작된 RC 보의 휨 거동)

  • Han, Sang-Hoon;Jeon, Byeong-Gu;Hong, Ki-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.26-33
    • /
    • 2018
  • This paper presents experimental and analytical results on flexural behavior of flexural members made of SIFCON. Twelve SIFCON beams were subjected to bending tests and their flexural behavior was evaluated. Experimental variables included steel fiber type, presence of tensile reinforcement, and height of section. The specimens using Type-B steel fibers, which had better pullout resistance than Type-A steel fibers, showed flexural failure behavior without shear failure. The aspect ratio of steel fiber had a great influence on the behavior of SIFCON beams without tensile steel, however the effect on the behavior of SIFCON beams was negligible. In addition, the flexural strength equation for SIFCON was proposed in the study. The mean and standard deviation of the ratios of the predicted value to the experimental value are 1.02 and 0.04, respectively. Therefore, the proposed flexural strength equation can be useful for the design and performance evaluation of SIFCON beam.

Optimal Displacement Control of Shear Wall Structure using Sensitivity Analysis Technique (감도해석기법을 이용한 전단벽 구조물의 최적변위제어)

  • Lee Han-Joo;Jung Sung-Jin;Kim Ho-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.121-128
    • /
    • 2005
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift for shear wall structures subject to lateral loads. To this end the displacement sensitivity depending on behavior characteristics of shear wall structures is established. Also, the approximation concept that can preserve the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Resizing sections in the stiffness-based optimal design are assumed to be uniformly varying in size and the technique of member grouping is considered for the improvement of construction efficiency Two types of 11-story shear wall structures are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF

Characteristics of Pultruded GFRP and Buckling Behavior of Angle and Tubular Member (인발성형 GFRP 부재의 특성 변화와 앵글 및 튜브 부재의 좌굴 거동 분석)

  • 이성우;신경재;김현정
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.15-19
    • /
    • 2000
  • Recently Western countries are now beginning to use ACM (Advanced Composites Material), in the construction industry Compared with existing construction materials, ACM possesses many advantages such as light-weight, high-strength, corrosion resistant property. Among other fabrication process of ACM, pultrusion is one of the promising one for civil infrastructure application. In this paper, the structural characteristics of pultruded GFRP strip and structural members of angle and tube type were studied. For the strip, parametric studies of pultrusion process has been carried out. Considered parameters were volume fraction, temperature, pulling speed and fiber orientations. For the pultruded angle and tube, compression test and buckling analysis has been carried out. The results were compared with calculated values using coded formulae

  • PDF

Nonlinear Model of FRP-Confined Concrete Members Considering with Three-Dimensional Behaviors (3차원 거동에 의한 원형 FRP-구속 콘크리트의 부재 비선형 모델)

  • Cho Chang-Geun;Kwon Minho;Park Moon-Ho;Kim Wha-Jung;Bae Soo-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.738-741
    • /
    • 2004
  • This study is concerning on modeling to predict the flexural behaviors of FRP-confined concrete structural members. For compressive behaviors of confined concrete by FRP jackets, the hypoelasticity-based constitutive law of concrete has been presented under the basis of three-dimensional stress states. The strength enhancement of concrete wrapped by FRP jackets has been determined by the failure surface of concrete in tri-axial states, and its corresponding peak strain is computed by the strain enhancement factor. The behavior of FRP jackets has been modeled using the mechanics of orthotropic laminated composite materials in two-dimensional stress states. To be based on the three-dimensional constitutive laws, an algorithm for the prediction of flexural bending behaviors of FRP-confined concrete structural member has been presented.

  • PDF