• Title/Summary/Keyword: structural material.

Search Result 6,484, Processing Time 0.031 seconds

Structural Topology Optimization for the Natural Frequency of a Designated Mode

  • Lim, O-Kaung;Lee, Jin-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.306-313
    • /
    • 2000
  • The homogenization method and the density function method are common approaches to evaluate the equivalent material properties for design cells composed of matter and void. In this research, using a new topology optimization method based on the homogenized material with a penalty factor and the chessboard prevention strategy, we obtain the optimal layout of a structure for the natural frequency of a designated mode. The volume fraction of nodes of each finite element is chosen as the design variable and a total material usage constraint is imposed. In this paper, the subspace method is used to evaluate the eigenvalue and its corresponding eigenvector of the structure for the designated mode and the recursive quadratic programming algorithm, PLBA algorithm, is used to solve the topology optimization problem.

  • PDF

A controllability-based formulation for the topology optimization of smart structures

  • Goncalves, Juliano F.;Fonseca, Jun S.O.;Silveira, Otavio A.A.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.773-793
    • /
    • 2016
  • This work presents a methodology to distribute piezoelectric material for structural vibration active control. The objective is to design controlled structures with actuators which maximizes the system controllability. A topology optimization was formulated in order to distribute two material phases in the domain: a passive linear elastic material and an active linear piezoelectric material. The objective is the maximization of the smallest eigenvalue of the system controllability Gramian. Analytical sensitivities for the finite element model are derived for the objective functions and constraints. Results and comparisons with previous works are presented for the vibration control of a two-dimensional short beam.

Mesoscopic study on historic masonry

  • Sejnoha, J.;Sejnoha, M.;Zeman, J.;Sykora, J.;Vorel, J.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.99-117
    • /
    • 2008
  • This paper presents a comprehensive approach to the evaluation of macroscopic material parameters for natural stone and quarry masonry. To that end, a reliable non-linear material model on a meso-scale is developed to cover the random arrangement of stone blocks and quasi-brittle behaviour of both basic components, as well as the impaired cohesion and tensile strength on the interface between the blocks and mortar joints. The paper thus interrelates the following three problems: (i) definition of a suitable periodic unit cell (PUC) representing a particular masonry structure; (ii) derivation of material parameters of individual constituents either experimentally or running a mixed numerical-experimental problem; (iii) assessment of the macroscopic material parameters including the tensile and compressive strengths and fracture energy.

Probability Analysis of Plane Strain Element using Boundary Element Method (경계요소법을 이용한 평면변형율요소의 확률해석)

  • Jeon, Jeong-Bae;Yoon, Seong-Soo;Park, Jin-Seon;Lee, Hyeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.39-46
    • /
    • 2012
  • The objectives of this study is intended to analyze stresses using the boundary element method and probability analysis for agricultural structure. Loads and material properties are an important factor when analyzing the structure. Until now, designing structure, loads and material properties are applied deterministic value. However, load and material properties involve uncertainties due to those change probabilistic and deterministic methods could not consider uncertainties. To solve these problems, the reliability analysis based on probability properties scheme was developed. Reliability analysis is easy to approach to analysis frame structure, however it has limitation when solving plane stress strain problems a kind of agricultural structures. The BEM (Boundary Element Method) is able to analysis plane strain problems by boundary conditions. Thus, this study applied boundary element method to analysis plane strain problem, load and material properties as a probabilistic value to calculate the analytical model using Monte Carlo simulations were developed.

Electrical, Structural, and optical property analysis of Si doped ZnO thin films (Si 첨가된 ZnO 박막의 전기적, 구조적, 광학적 특성 분석)

  • Kim, Jun-Sik;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.218-218
    • /
    • 2010
  • 본 연구에서는 투명 전극 대체 물질로써 유망한 ZnO의 전기적 특성 향상을 위하여 IV족 원소인 Si을 1, 3, 5 wt% 첨가하여 SZO 박막을 제작하여 dopant의 앙, 온도 변화에 따른 전기적, 광학적, 구조적 특성을 분석하였다. Rf-magnetron sputtering system을 이용하여 slide glass위에 증착 하였으며 $100{\sim}500^{\circ}C$ 온도 변화를 주었다. 결정성 분석을 위한 XRD 분석 결과 온도 증가에 따라 (002) peak의 세기가 증가하며, Si 첨가량과 관계없이 동일한 2 theta에서 peak가 관측되었다. 미세 구조 분석 결과 입자 크기 또한 온도 증가에 따라 증가함을 확인하였으며, 박막 두께는 대략 300nm로 확인하였다. 모든 SZO 박막은 가시광선 영역에서 80% 이상의 투과율을 보였으며 PL 분석 결과 Si 첨가량과 관계없이 동일한 스펙트럼을 가지며 380 nm, 540 nm 근처에서 peak를 확인하였다. 최소 비저항 값은 5SZO 막에서 $2.44{\times}10^{-3}\;{\Omega}cm^{-1}$을 보였다.

  • PDF

Electrochemical Properties of PPy/CNT Electrodes Prepared by Chemical Process for Ultracapacitor

  • Shin, Jeong-Gyun;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.141-144
    • /
    • 2007
  • Polypyrrole(PPy) was composite with MWNT to attain cycle stable by chemical method. We have been considered PPy is the ideal material for high energy density electrochemical capacitor due to pseudo capacitor reaction. In this study we found that increase in cycle life due to composite MWNT. Also PPy/MWNT composite material have resulted larger capacitance and exhibits better electrochemical behavior. The structural feature was investigated by using SEM and TEM. The PPy/CNT composite is not only a promising ultracapacitor material for energy storages but also has a good possibility because of its great capacitive properties, simple preparation and low cost.

An Experimental Study on the Behavior of Carbon Fiber Grid Reinforced Flexural Members (탄소섬유그리드 보강 휨부재의 거동에 대한 실험적 연구)

  • 박제용;안동준;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.154-159
    • /
    • 1999
  • In this paper we present tile results of an experimental investigation on the physical and mechanical properties of carbon fiber grid, polymer mortar, and carbon fiber grid reinforced plain concrete flexural members. In order to repairing and reinforcing damaged and/or deteriorated existing concrete structural members, new materials have been developed and utilized in the construction industries. But the physical and mechanical behaviors of the material are not well understood. To use the material effectively various aspects of the material must be throughly investigated analytically as well as experimentally. In this investigation we found the physical and mechanical properties of carbon fiber grid and polymer mortar which are directly utilized in the repair and reinforcement design of damaged or deteriorated concrete structures. In addition, we also investigate the strengthening effect of carbon fiber grid on the plain concrete flexural test specimens. It was found that the material can be used to repair and strengthen the concrete structures effectively.

  • PDF

Development of finite element model using incremental endochronic theory for temperature sensitive material

  • Kerh, Tienfuan;Lin, Y.C.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.115-126
    • /
    • 2003
  • A novel finite element model based on the incremental endochronic theory with the effect of temperature was developed in this study to explore the deformed behaviors of a flexible pavement material. Three mesh systems and two loading steps were used in the calculation process for a specimen of three-dimensional circular cylinder. Computational results in the case of an uni-axial compression test for temperatures at $20^{\circ}C$ and at $40^{\circ}C$ were compared with available experimental measurements to verify the ability of developing numerical scheme. The isotropic response and the deviatoric response due to the thermal effect were presented from deformations in different profiles and displacement plots for the entire specimen. The characteristics of changing asphalt concrete material under a specified loading condition might be seen clearly from the numerical results, and might provide an useful information in the field of road engineering.

A Study on Material Selection of the Carbody Structure of Korean Tilting Train express(TTX) through the Verification of Design Requirements (설계요구조건 검증을 통한 한국형 고속 틸팅열차(TTX)의 차체 재료 선정에 관한 연구)

  • 신광복;구동회;한성호;박기진
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.77-84
    • /
    • 2004
  • In order to determine the most suitable material system for achieving the lightweight design while fulfilling the design requirements of carbody structures of Korean Tilting Train eXpress(TTX), aluminum carbody. composite carbody, and hybrid carbody combined with aluminum and composite structures were considered in the present study. The finite-element analysis was used to verify the design requirements or the TTX carbody structures with the material system considered in the design stages. The stresses in the carbody structures and deflections of underframe against static load cases were used as design criteria. The results show that the hybrid carbody structures are beneficial with regard to weight savings and structural integrity in comparison to aluminum and composite carbody structures.

The Possibilities to use the Non- Destructive Testing on Diagnosing Wears of Wagon Chassis

  • Munkhtsetseg, T.
    • International Journal of Railway
    • /
    • v.5 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • This report is devoted to the problems of Mongolian Railway Transportation Safety such as high length of wagon service life, defects due to the more factors of exploitation, idle time, increase of faults, poor condition of repairing shops and more hand and mechanical operations and these conditions are quite difficult to meet the safety and reliability of increasing transportation from day to day. The paper discusses that the most optimum solution is diagnosing before occurring wear, breakdown, and defects on the basis of studying characteristics of structural material breakdown, residual methods of voltage, effects of material hardness and linear defects of a crystal net and the reform of machines is very important to implement it. It focuses the structures, characteristics of the material transportation and tests and analyses of the wagon cart which has to meet the traffic safety of wagons and slow and soft movement. The study is done on the wagon chassis which has to meet the traffic safety of luggage wagons.