• Title/Summary/Keyword: structural material.

Search Result 6,419, Processing Time 0.046 seconds

A Study on Implementation of Robot Overlay Welding System Based on OLP for Ball of Ball Valves (볼밸브용 볼의 OLP 기반 로봇육성용접 시스템 구현에 관한 연구)

  • Jang, Jae-Sung;Hwang, Seong-Hyun;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.446-452
    • /
    • 2016
  • Recently, heat resistant super alloys (which are wear-resistant, corrosion-resistant, and heat-resistant), have been used as the basic structural material in offshore and petrochemical plants. On the other hand, making valves from very expensive, high heat-resistant alloys increases the production cost and decreases its market competitiveness. To solve these problems, the technique of overlaying only those that flow on the fluid has been used as an effective method. Nevertheless, because the former technique of overlaying the ball is performed manually, it takes too much time and perfect welding is difficult to perform. To solve this problem, this study developed a robot automation system that can make uniformly overlay welding of the ball for ball-valves. The system consists of a 6-axis welding robot with a welding torch and additional 2 axes for the rotation of positioner, the controller, and a robot path OLP (Off-Line Programming). The CAD drawing data was entered in the Off-line program to obtain the robot teaching point and drive source. Overlay welding paths were implemented using Matlab. Through an automated overlaying system that implemented the OLP, the productivity rose 2.58 times, as the amount of time required for work decreased from 88 hours to 41 hours.

Constitutive Relation of Concrete to Predict P-M Interaction Strength of Rectangular CFT Short Columns (콘크리트충전 각형강관단주의 P-M 조합강도 예측을 위한 콘크리트 구성방정식)

  • Lee, Cheol Ho;Kang, Ki Yong;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.31-42
    • /
    • 2015
  • The plastic stress distribution method and the strain compatibility method are the two representative methods to calculate the P-M interaction strength of RCFT (rectangular concrete filled tube) columns. The plastic stress distribution method is approximate while the stress compatibility method should approach the exact solution if accurate constitutive relations of the materials involved are used. Recent study by the authors pointed out that, because of lack of accurate constitutive model for the concrete confined by the rectangular steel tube, no strain compatibility method according to the current structural provisions provides a satisfactory prediction of the P-M interaction strength of RCFT columns under various material combinations. An empirical constitutive model which can capture the stress-strain characteristics of the confined concrete of RCFT columns is proposed based on analyzing extensive exisitng test database. The key idea was to define the concrete crushing strain as a function of steel-to-concrete strength ratio and width-to-thickness ratio of steel tube. It was shown that the proposed model leads to more accurate and more consistent prediction of the P-M interaction strength of RCFT columns under general design conditions.

Fine Structural Study on the Capture Thread-Producing Organs in Nephila clavata L.Kocn (Aranese: Araneidae) I. Aggregate Gladns (무당거미(Nephila clavata L.Koch) 포획사 생성기관의 미세구조에 관한 연구 I. 수상선)

  • 문명진;김우갑
    • The Korean Journal of Zoology
    • /
    • v.32 no.3
    • /
    • pp.211-220
    • /
    • 1989
  • The fine structure of the aggregate glands-one of the capture thread producing organs-in the orb web spider, Nephila clavata L.Koch, is studied with light and electron microscopes. Gluey capture threads or sticky spirals of the orb web are originated from the silks of two flagelliform glands and four aggregate glands which are connected to the posterior spinnerets, and the arrangement fo their spigots(large spinning tubes) shows a charaterstic form called "triad". The aggregate galnd is composed of large and multilobed secretory portion and thick excretory duct surrounded by large irregular nodules. The excretory duct of the aggregate galnds basically consists of three superposed types of cells which are inner columnar epithelium, nodule-forming cells and outer connestives. The cuticles of the proximal duct near the secretory portion are composed of endocuticle and exocuticle, whereas ghe distal duct near the spinning tubes has a electron lucent subcuticle which had the functions of water removal and orientation of silk fibers. In the cytoplasmic process of the large and irregular nodule-forming cells surrounded by invaginations of the plasma membranes, numerous mitochondria and glycogen particles are contained. The maturational level of the nodule cells is perceived from the appearence of these cell inclusions. The secretory portion of the glands which porduce the secretory silk material shows two layers of the cells which are simple cuboidal epithelium and several connective layers. In the cytoplasm of the glandular epithelial cell, rough endoplasmic reticulums are well developed, and two types of secretory granules are observed. Between the adjacent epithelial cells, specialized septate junctions are formed along the plasma membranes.membranes.

  • PDF

Sustainable Design Method of Reinforced Concrete Beam Using Embodied Energy Optimization Technique (내재에너지 최적화를 통한 철근 콘크리트 보의 지속가능 설계법)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Yeo, DongHun;Lee, Sang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1053-1063
    • /
    • 2014
  • This study presents a sustainable design method that optimizes the embodied energy of concrete beam based on the concept of sustainable development that effectively utilizes natural resource and energy within the range that our succeeding generation can afford to utilize. In order to get the flexural strength carrying the ultimate load, concrete beam sections are designed by optimization that consists of the embodied energy as a objective function and the requirements of design code as constrained conditions. The sustainable design can be used to minimize the embodied energy consumed in material production, construction, operation, demolition of the infrastructure. As a result of comparison of the cost and the embodied energy optimizations based on practical beam sections, it is shown that 20% embodied energy saving and 35% $CO_2$ emission saving are achieved by sacrificing 10% cost increase. The sustainable design method provides a new effective methodology that manages the strength design concept based on cost minimization together with economic feasibility and sustainability. In addition, the method is expected to be applied to more various structural design practices.

Study on the Enhanced Specific Surface Area of Mesoporous Titania by Annealing Time Control: Gas Sensing Property (열처리 시간에 따른 메조기공 타이타니아의 비표면적 향상 연구: 가스센싱 특성 변화)

  • Hong, M.-H.;Park, Ch.-S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • Mesoporous ceramic materials were applied in various fields such as adsorbent and gas sensor because of low thermal conductivity and high specific surface area properties. This structure could be divided into open-pore structure and closed-pore structure. Although closed-pore structure mesoporous ceramic materials have higher mechanical property than open-pore structure, it has a restriction on the application because the increase of specific surface area is limited. So, in this work, specific surface area of closed-pore structure $TiO_2$ was increased by anneal time. As increased annealing time, crystallization and grain growth of $TiO_2$ skeleton structured material in mesoporous structure induced a collapse and agglomeration of pores. Through this pore structural change, pore connectivity and specific surface area could be enhanced. After anneal for 24 hrs, porosity was decreased from 36.3% to 34.1%, but specific surface area was increased from $48m^2/g$ to $156m^2/g$. CO gas sensitivity was also increased by about 7.4 times due to an increase of specific surface area.

Structure of Oocyte Surface in Two Korean Minnow Species, Rhynchocypris kumgangensis and R. oxycephalus (Pisces: Cyprinidae) (금강모치와 버들치 난모세포의 표피 구조)

  • Gwak, Jin-Young;Park, Jong-Young
    • Korean Journal of Ichthyology
    • /
    • v.19 no.1
    • /
    • pp.16-23
    • /
    • 2007
  • Oocyte surface in two Korean minnows, Rhynchocypris oxycephalus and R. kumgangensis was examined by light and electron microscope. In two species, the development of the oocyte was similar, but the follicular layer surrounding full-grown oocyte showed an evident difference. In R. oxycephalus, the follicular layer at the yolk vesicle stage became bilaminar with the retention of its outer squamous cell layer and the acquisition of an inner cuboidal or round cell layer just over the zona radiata. As the oocyte grows, the cuboidal cells of the inner follicular layer began to be replaced by columnar cells. At the yolk granule stage, the columnar cells secreted mucin to their cytoplasm (adhesive materials) and then surround the entire oocyte, as bundles of fence-shaped structures. Whereas, although the follicular layer of R. kumgangensis had an outer squamous layer and an inner cuboidal or round cell layer at the yolk vesicles as in R. oxycephalus, no inner cells were more changed with the retention of its cuboidal or round cells. Finally, in R. kumgangensis, the adhesive materials did not occur. In Korean two minnows, the structural difference in the oocyte surface seems to be related to their habitats and spawning characteristics as well as taxonomic characters.

A Study on the Shear Behavior of Reinforced High Strength Lightweight Concrete Beams (경량고강도 콘크리트보의 전단거동에 관한 연구)

  • 신종률;권우현;권기혁;곽윤근;노희일
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.149-159
    • /
    • 1996
  • Recent advances in material technology has accelerated the development of higher strength concretes using lightweight manufactured aggregates.Concretes with these chnractcristics are designable since the reductiun of dead loads and the increase in load capacity can oflix substantial cost reductions. Alt,hough thesc rharackristics are very desirable, very little information is availablc to the structural rivic;~~,cher about the properties of highstrength lightweight concrete. In general, shear strength of reinforced concrete beams is dependent on the compressive strength of concrete. the longitudinal steel ratio, the shear span to the depth ratio and shear reinforcement. In this study. eight single reinforced high strength lightweight concrete beams were tested to investigate their behavior and to determine their ultimate shear strengths.The variables studied in this investigation are shear span to effective depth ratio a/d = 1.5. 2.5, 3.5 and 4.5 : vertical shear reinforcement ratio ${\rho}_8= 0%$ and 1.136%. Test results were analyzed and compared with strengths predicted by ACI code equation. Zsutty's equation. As the results, ACI Eq.(ll-3) and ACI Eq.(ll-6) are conservative for high strength lightweight concrete beam. Also Zsuttyrs Eq. is conservative for beams except short beams. (a/d= 1.5)

Properties of Chemically Activated MSWI(Municipal Solid Waste Incinerator) Mortar (도시 폐기물 소각재를 이용한 화학적 활성화 모르타르의 특성)

  • Jo, Byung-Wan;Kim, Kwang-Il;Park, Jong-Chil;Park, Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.589-594
    • /
    • 2006
  • The recycling of industrial wastes in the concrete manufacturing is of increasing interest worldwide, due to the high environmental impact of the cement and concrete industries and to the rising demand of infrastructures, both in industrialized and developing countries. The production of municipal wastes in the South Korea is estimated at about 49,902 ton per day and only 14.5% of these are incinerated and principally disposed of in landfill. These quantities will increase considerably with the growth of municipal waste production, the progressive closing of landfill, so the disposal of municipal solid waste incinerator(MSWI) ashes has become a continuous and significant issue facing society, both environmentally and economically. MSWI ash is the residue from waste combustion processes at temperature between $850^{\circ}C\;and\;1,000^{\circ}C$. And the main components of MSWI ash are $SiO_2,\;CaO\;and\;Al_2O_3$. The aim of this study is to find a way to useful application of MSWI ash(after treatment) as a structural material and to investigates the hydraulic activity, compressive strength development composition variation of such alkali-activated MSWI ashes concrete. And it was found that early cement hydration, followed by the breakdown and dissolving of the MSWI-ashes, enhanced the formation of calcium silicate hydrates(C-S-H). The XRD and SEM-EDS results indicate that, both the hydration degree and strength development are closely connected with a curing condition and a alkali-activator. Compressive strengths with values in the 40.5 MPa were obtained after curing the activated MSWI ashes with NaOH+water glass at $90^{\circ}C$.

Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete (강섬유 보강 초고성능 콘크리트의 재료특성 및 휨 거동 역학적 특성)

  • Kim, Kyoung-Chul;Yang, In-Hwan;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • This paper concerns the flexural behavior of steel fiber-reinforced ultra-high-performance concrete (UHPC) beams with compressive strength of 150 MPa. It presents experimental research results of hybrid steel fiber-reinforced UHPC beams with steel fiber content of 1.5% by volume and steel reinforcement ratio of less than 0.02. This study aims at investigating of compressive and tensile behavior of UHPC to perform a reasonable prediction for flexural capacity of UHPC beams. Tensile behavior modeling was performed using load-crack mouth opening displacement relationship obtained from bending test. The experimental results show that steel fiber-reinforced UHPC is in favor of cracking resistance and ductility of beams. The ductility indices range from 1.6 to 3.0, which means high ductility of hybrid steel fiber-reinforced UHPC. Test results and numerical analysis results for the moment-curvature relationship are compared. Though the numerical analysis results for the bending capacity of the UHPC beam without rebar is larger than test result, the overall comparative results show that the bending capacity of steel fiber-reinforced UHPC beams with compressive strength of 150 MPa can be predicted by using the established method in this paper.

Shear Friction Strength Model of Concrete considering Transverse Reinforcement and Axial Stresses (축응력 및 횡보강근을 고려한 콘크리트의 전단마찰내력 평가모델)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.167-176
    • /
    • 2016
  • Shear friction strength model of concrete was proposed to explain the direct friction mechanism at the concrete interfaces intersecting two structural elements. The model was derived from a mechanism analysis based on the upper-bound theorem of concrete plasticity considering the effect of transverse reinforcement and applied axial loads on the shear strength at concrete interfaces. Concrete was modelled as a rigid-perfectly plastic material obeying modified Coulomb failure criteria. To allow the influence of concrete type and maximum aggregate size on the effectiveness strength of concrete, the stress-strain models proposed by Yang et al. and Hordijk were employed in compression and tension, respectively. From the conversion of these stress-strain models into rigidly perfect materials, the effectiveness factor for compression, ratio of effective tensile strength to compressive strength and angle of concrete friction were then mathematically generalized. The proposed shear friction strength model was compared with 91 push-off specimens compiled from the available literature. Unlike the existing equations or code equations, the proposed model possessed an application of diversity against various parameters. As a result, the mean and standard deviation of the ratios between experiments and predictions using the present model are 0.95 and 0.15, respectively, indicating a better accuracy and less variation than the other equations, regardless of concrete type, the amount of transverse reinforcement, and the magnitude of applied axial stresses.