• Title/Summary/Keyword: structural joint

Search Result 1,488, Processing Time 0.027 seconds

Experimental Study on Structural Behavior of Joints for Precast Concrete Segment (프리캐스트 콘크리트 세그먼트 접합부의 구조거동에 관한 실험적 연구)

  • Lee, Young-Hak;Kim, Min-Sook;Jung, Bo-Na;Kim, Hee-Cheul;Kim, Kwan-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.59-65
    • /
    • 2009
  • The use of precast concrete segments facilitates quality control and reduces construction cost and period. However, as a construction method it has limited applicability, for it demonstrates structurally disadvantageous behaviors due to stress concentration and large displacement in the joint of assembled segments. This paper proposes a precast segment joint with improved structural performance, and experimentally assesses the structural performance of the proposed joint in terms of crack and failure modes, deformation, maximum load and displacement ductility. In consideration of constructability and structural performance, this paper suggests different types of joint with shear key, post tension and steel rods as variables, and performs a static loading test on them. The test results show that the performance of SGSP specimens is around 84% that of a monolithic specimen in terms of the maximum load, while their ductility behaviors are better than the monolithic specimen. This result confirms the improved structural performance and applicability of the proposed joint.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

Analytical modeling of thin-walled box T-joints

  • Marur, Prabhakar R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.447-457
    • /
    • 2009
  • A general analytical method for computing the joint stiffness from the sectional properties of the members that form the joint is derived using Vlasov's thin-walled beam theory. The analytical model of box T-joint under out-of-plane loading is investigated and validated using shell finite element results and experimental data. The analytical model of the T-joint is implemented in a beam finite element model using a revolute joint element. The out-of-plane displacement computed using the beam-joint model is compared with the corresponding shell element model. The results show close correlation between the beam revolute joint model and shell element model.

Structural Behavior of the RC Column-Steel Beam Joint with Band Plate (Band Plate로 연결된 RC기둥-철골보 접합부의 이력거동에 관한 실험연구)

  • Seo, S.Y.;Yi, W.H.;Lee, L.H.;Yoon, S.J.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.213-221
    • /
    • 2002
  • This paper presents the experimental result of Reinforced Concrete column-steel beam joint connected by Band Plates(BP). Main parameters in the test are the shape of BP and thickness of plate. Ten interior and exterior RC column-steel beam joint specimens are designed. Cyclic loads are applied to the beam end of eight specimens (four interior specimens and four exterior specimens). To evaluate the cyclic effect, monotonic loads are acted for two specimens. All specimen showed similar failure pattern such as the plate of BP get torn after the large deformation. Even though the specimen with double cross type BP has lower strength than the specimen with single cross type BP, the energy dissipation capacity of the specimen turned out high. Thus, provided the strength of joint with double cross type to be designed to have suitable strength by increasing the thickness of plate, the joint system may show higher seismic capacity.

Fatigue Behavior of offshore K-Joint Structure (해양 K-Joint 구조의 피로 성능 평가)

  • Park Kwan-Kyu;Im Sung-Woo;Jo Chul-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.655-663
    • /
    • 2006
  • Large-scale model tests of welded tubular K-joints were carried out to observe the fatigue behavior of API 2W Gr.50 steel produced by POSCO. The fatigue crack behaviors for various loading conditions were measured and investigated around the critical joint sections. The experimental results have been verified with numerical approaches and also compared with the IIW, DnV RP-C203 and API RP 2A-WSD design curves. The hot spot strss method was applied in the study. The SCF factor for tubular K-joint was also obtained.

  • PDF

Non-tubular bonded joint under torsion: Theory and numerical validation

  • Pugno, Nicola;Surace, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.125-138
    • /
    • 2000
  • The paper analyzes the problem of torsion in an adhesive non-tubular bonded single-lap joint. The joint considered consists of two thin rectangular section beams bonded together along a side surface. Assuming the materials involved to be governed by linear elastic laws, equilibrium and compatibility equations were used to arrive at an integro-differential relation whose solution makes it possible to determine torsional moment section by section in the bonded joint between the two beams. This is then used to determine the predominant stress and strain field at the beam-adhesive interface (stress field along the direction perpendicular to the interface plane, equivalent to the applied torsional moment and the corresponding strain field) and the joint's elastic strain (absolute and relative rotations of the bonded beam cross sections). All the relations presented were obtained in closed form. Results obtained theoretically are compared with those given by a three dimensional finite element numerical model. Theoretical and numerical analysis agree satisfactorily.

Effect of Joint Reinforcement on Reinforced Concrete Pile by Centrifugal Casting (원심성형 철근콘크리트 말뚝 이음부의 보강 효과)

  • Joo, Sanghoon;Hwang, Hoonhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.501-509
    • /
    • 2019
  • The construction of foundation piles for buildings and bridges is changing from pile driving to an injected precast pile method. The goal is to minimize environmental damage, noise pollution, and complaints from neighboring residents. However, it is necessary to develop economic piles that are optimized for precasting by a centrifugal method in terms of both the material and structural system. A reinforced joint method is proposed for reinforced concrete piles (RC piles) manufactured by centrifugal casting. A previous study concluded that the structural performance of the current joint system for RC piles could be improved by using a reinforced joint composed of extended circular band plates and studs. In this study, the structural performance of such a joint was validated experimentally by bending and shear strength measurements. The proposed joint reinforcement method showed adequate structural performance in terms of bending and shear strength. The overall load-deflection behavior is close to that of a structure without joints, so it is expected that the behavior and performance of the design can be reliably reflected in site structures.

Structural Joint Damage Assessment Using Neural Networks (신경망을 이용한 구조물 접합부의 손상도 추정)

  • 방은영;이진학;윤정방
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.35-46
    • /
    • 1998
  • Structural damage is used to be modeled through reductions in the stiffness of structural elements for the purpose of damage estimation of structural system. In this study, the concept of joint damage is employed for more realistic damage assessment of a steel structure. The joint damage is estimated damage based on the mode shape informations using neural networks, The beam-to-column connection in a steel frame structure is represented by a rotational spring at the fixed end of a beam element. The severity of joint damage is defined as the reduction ratio of the connection stiffness with respect to the value of the intact joint. The concept of the substructural identification is used for the localized damage assessment in a large structure. The feasibility of the proposed method is examined using an example with simulated data. It has been found that the joint damages can be reasonably estimated for the case with the measurements of the mode vectors subjected to noise.

  • PDF

Design and Construction of Integral Abutment Bridge (일체 구조형식 교량의 설계 및 시공기법 연구)

  • 이성우;나정우;조남훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.121-128
    • /
    • 1996
  • In this study design and construction technique for joint-less integral abutment for short to mid span bridges was developed. Expansion of superstructure due to thermal effect was absorbed in the flexible pile-type abutment in stead of expansion joint in the conventional bridges. Design method for pile subject to vertical and horizontal force was proposed. Backfill, approach slab and details of its connection joint with pavement was also proposed.

  • PDF

Buckling Analysis for Single Layer Latticed Domes considering the Change of Joint Rigidity (접합부 강성변화를 고려한 단층 래티스 돔의 좌굴해석)

  • 이후진;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.337-344
    • /
    • 2001
  • This paper is concerned with the change of joint rigidity in estimating the degree of semi-rigidity of connections and the buckling load in a single layer latticed dome. The estimations are based on information about the ratio for the rotational stiffness of the connection to the flexural stiffness of the member and the minimum eigenvalue of a structure for pinned, semi-rigid and completely rigid cases, respectively. Connection characteristics are reflected in the ratio control of joint rigidity for the DOFs to be related using the spring element by FEM.

  • PDF