• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.031 seconds

Wireless operational modal analysis of a multi-span prestressed concrete bridge for structural identification

  • Whelan, Matthew J.;Gangone, Michael V.;Janoyan, Kerop D.;Hoult, Neil A.;Middleton, Campbell R.;Soga, Kenichi
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.579-593
    • /
    • 2010
  • Low-power radio frequency (RF) chip transceiver technology and the associated structural health monitoring platforms have matured recently to enable high-rate, lossless transmission of measurement data across large-scale sensor networks. The intrinsic value of these advanced capabilities is the allowance for high-quality, rapid operational modal analysis of in-service structures using distributed accelerometers to experimentally characterize the dynamic response. From the analysis afforded through these dynamic data sets, structural identification techniques can then be utilized to develop a well calibrated finite element (FE) model of the structure for baseline development, extended analytical structural evaluation, and load response assessment. This paper presents a case study in which operational modal analysis is performed on a three-span prestressed reinforced concrete bridge using a wireless sensor network. The low-power wireless platform deployed supported a high-rate, lossless transmission protocol enabling real-time remote acquisition of the vibration response as recorded by twenty-nine accelerometers at a 256 Sps sampling rate. Several instrumentation layouts were utilized to assess the global multi-span response using a stationary sensor array as well as the spatially refined response of a single span using roving sensors and reference-based techniques. Subsequent structural identification using FE modeling and iterative updating through comparison with the experimental analysis is then documented to demonstrate the inherent value in dynamic response measurement across structural systems using high-rate wireless sensor networks.

Dynamic analysis of buildings considering the effect of masonry infills in the global structural stiffness

  • de Souza Bastos, Leonardo;Guerrero, Carolina Andrea Sanchez;Barile, Alan;da Silva, Jose Guilherme Santos
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.169-184
    • /
    • 2019
  • This research work presents a study that aims to assess the dynamic structural behaviour and also investigate the human comfort levels of a reinforced concrete building, when subjected to nondeterministic wind dynamic loadings, considering the effect of masonry infills on the global stiffness of the structural model. In general, the masonry fills most of the empty areas within the structural frames of the buildings. Although these masonry infills present structural stiffness, the common practice of engineers is to adopt them as static loads, disregarding the effect of the masonry infills on the global stiffness of the structural system. This way, in this study a numerical model based on sixteen-storey reinforced concrete building with 48 m high and dimensions of $14.20m{\times}15m$ was analysed. This way, static, modal and dynamic analyses were carried out in order to simulate the structural model based on two different strategies: no masonry infills and masonry infills simulated by shell finite elements. In this investigation, the wind action is considered as a nondeterministic process with unstable properties and also random characteristics. The fluctuating parcel of the wind is decomposed into a finite number of harmonic functions proportional to the structure resonant frequency with phase angles randomly determined. The nondeterministic dynamic analysis clearly demonstrates the relevance of a more realistic numerical modelling of the masonry infills, due to the modifications on the global structural stiffness of the building. The maximum displacements and peak accelerations values were reduced when the effect of the masonry infills (structural stiffness) were considered in the dynamic analysis. Finally, it can be concluded that the human comfort evaluation of the sixteen-storey reinforced concrete building can be altered in a favourable way to design.

Evaluation of Structural Performance of Unhangak in Suwon Hwaryeongjeon by Three-Dimensional Structural Analysis (3차원 구조해석에 의한 수원 화령전 운한각의 구조성능 평가)

  • Yeong-Min Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.197-204
    • /
    • 2024
  • In this paper, the structural performance of Suwon Hwaryeongjeon Unhangak, a representative traditional timber structure in the late Joseon Dynasty, was evaluated. Based on the structure composition of Unhangak, an analysis model was elaborately constructed with Midas Gen, a 3-dimensional structural analysis software. The safety and serviceability of major structural members were evaluated by static analysis, and the dynamic behavior characteristics were evaluated by eigenvalue analysis. Most of the members satisfied the safety and serviceability standards with a margin; however, the bending stress ratio in the oemogdori exceeds the standard by 20.7%, so it is considered that long-term monitoring is needed for this member. The natural period of Unhangak is 1.079 seconds, which is slightly longer than traditional timber buildings of similar scale. In particular, it is analyzed that torsional movement occurred in the secondary mode due to the influence of the rear masonry firewall.

Evaluation of Structural Performance of Self-anchored Suspension Bridge Using Bridge Health Monitoring System (계측모니터링 시스템을 활용한 자정식 현수교의 구조성능 평가)

  • Kim, Jeong-Hoon;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.189-198
    • /
    • 2009
  • In this paper, the performance of bridge health monitoring system(BHMS) installed in suspension bridge was tested and the field loading tests have been done by using BHMS to get quantitative results on the response of bridge. Before the field tests, globally structural analysis was performed to verify and estimate the test results and the static and dynamic field loading tests were carried out. Depending on comparison with results of field tests and structural analysis, field tests results were evaluated as 30%~50% less than structural analysis results, so it was confirmed that the bridge has excellent structural performance. Therefore field test results were measured within an acceptable error range, so it is verified that the BHMS in the bridge has been reliable and efficient.

Evaluation of Seismic Behavior for Masonry Infilled RC Moment Resisting Frame with Openings (개구부가 있는 비내력벽을 고려한 저층 RC골조구조물의 지진거동 평가)

  • Ko, Hyun;Park, Yong-Koo;Lee, Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.483-489
    • /
    • 2008
  • Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middlerise RC buildings In the structural design and assessment of structural behaviors of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models. In this study, seismic behaviors of RC frame with/without masonry infill walls were investigated. To this end, the infill walls were modeled as equivalent diagonal struts. Based on analytical results, it has been shown that masonry infill walls can increase the global strength and stiffness of a structure. Accordingly, inter-story drift ratio will be decreased but seismic forces applied to the structure were increased than design seismic load because natural period of the structure was decreased. It is also seen from the analytical results that the inelastic deformation of RC frame with soft story is concentrated on the first story columns and thus, partial damage may have possibility of collapse of system.

  • PDF

Development of seismic collapse capacity spectra for structures with deteriorating properties

  • Shu, Zhan;Li, Shuang;Gao, Mengmeng;Yuan, Zhenwei
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • Evaluation on the sidesway seismic collapse capacity of the widely used low- and medium-height structures is meaningful. These structures with such type of collapse are recognized that behave as inelastic deteriorating single-degree-of-freedom (SDOF) systems. To incorporate the deteriorating effects, the hysteretic loop of the nonlinear SDOF structural model is represented by a tri-linear force-displacement relationship. The concept of collapse capacity spectra are adopted, where the incremental dynamic analysis is performed to check the collapse point and a normalized ground motion intensity measure corresponding to the collapse point is used to define the collapse capacity. With a large amount of earthquake ground motions, a systematic parameter study, i.e., the influences of various ground motion parameters (site condition, magnitude, distance to rupture, and near-fault effect) as well as various structural parameters (damping, ductility, degrading stiffness, pinching behavior, accumulated damage, unloading stiffness, and P-delta effect) on the structural collapse capacity has been performed. The analytical formulas for the collapse capacity spectra considering above influences have been presented so as to quickly predict the structural collapse capacities.

Study on Fire Resistance Performance According to Boundary Conditions for Beams Made of High-Strength Structural Steels Using Analytical Methods (경계조건에 따른 고강도 H형강 부정정 보부재의 해석적 내화성능 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.23-28
    • /
    • 2015
  • Recently, structural materials have been developed to have high performance, and SM 520 has been developed and used for high-rise buildings. However, fires frequently occur in buildings, and the number of victims and amount of damage increase year by year. However, the evaluation of fire resistance performance for structural beams made of SM 520 is done with specimens made of ordinary structural steels with boundary conditions of a fixed beam, and the results are allowed for use in steel-framed buildings. This study analyzed the fire resistance performance of statistically indeterminate beams built with SM 520. The analysis used a fire engineering technique that includes mechanical and thermal data of SM 520 and heat transfer theory, and heat stress analysis was also conducted. The results from the analysis were compared with those from a statistically determinate beam made of ordinary structural steels.

Design Improvement of Front-End Loader for Tractor to Reduce Stress Concentration and Evaluation of Impact Safety (응력집중 저감을 위한 트랙터용 프론트 로더의 설계개선 및 충격 안전성 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.109-119
    • /
    • 2018
  • The purpose of this study is to evaluate the structural safety of the front-end loader for the 90 kW class of agricultural tractors in impact test conditions. Deformation and stress on the loader under the impact test conditions are analyzed using the commercial finite element analysis software ANSYS. In previous research dealing with the initial design of the loader, the maximum stress occurred in the mount and exceeded the yield strength of the material. In this paper, an improved design of the mount of the loader was proposed to reduce the stress concentration in the initial design. The safety of the improved design was verified by performing rigid-body dynamics analysis, transient structural analysis, and static structural analysis under three impact test conditions: a drop and catch test, a corner pull test, a corner push test. It was found that the local stress concentration in the mount that appeared in the initial design was greatly reduced in the improved design, and that the maximum stresses occurred in the three impact test conditions are smaller than the yield strength. It is expected that the design improvement of the mount proposed in this study and the method of analysis may be effectively used to enhance structural safety in the development of new model front loaders in the future.

Structural Analysis on A Steel Roof LNG Storage Tank (강재 지붕형 LNG 저장탱크 구조안전성평가)

  • Lee, Seung-Rim;Park, Jang-Sik;Lee, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.40-44
    • /
    • 2009
  • This is a comparative structural analysis for a steel roof LNG storage tank that has some advantages relatively in designing larger scale tanks and construction cost, etc. compared with a conventional concrete roof LNG storage tank as the capacity of LNG storage tanks is bigger. Structural analysis was performed on a 200,000$k{\ell}$ steel roof LNG storage tank and a concrete of the same capacity in condition of three critical load combination cases, a normal operation, a LNG spillage and seismic case by using finite element method. And comparative structural safety evaluation was carried out by using strength ratio in places of concrete wall, foundation and roof with a quantitative method.

  • PDF

Three-dimensional structural health monitoring based on multiscale cross-sample entropy

  • Lin, Tzu Kang;Tseng, Tzu Chi;Lainez, Ana G.
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.673-687
    • /
    • 2017
  • A three-dimensional; structural health monitoring; vertical; planar; cross-sample entropy; multiscaleA three-dimensional structural health monitoring (SHM) system based on multiscale entropy (MSE) and multiscale cross-sample entropy (MSCE) is proposed in this paper. The damage condition of a structure is rapidly screened through MSE analysis by measuring the ambient vibration signal on the roof of the structure. Subsequently, the vertical damage location is evaluated by analyzing individual signals on different floors through vertical MSCE analysis. The results are quantified using the vertical damage index (DI). Planar MSCE analysis is applied to detect the damage orientation of damaged floors by analyzing the biaxial signals in four directions on each damaged floor. The results are physically quantified using the planar DI. With progressive vertical and planar analysis methods, the damaged floors and damage locations can be accurately and efficiently diagnosed. To demonstrate the performance of the proposed system, performance evaluation was conducted on a three-dimensional seven-story steel structure. According to the results, the damage condition and elevation were reliably detected. Moreover, the damage location was efficiently quantified by the DI. Average accuracy rates of 93% (vertical) and 91% (planar) were achieved through the proposed DI method. A reference measurement of the current stage can initially launch the SHM system; therefore, structural damage can be reliably detected after major earthquakes.