• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.036 seconds

Optimal sensor placement techniques for system identification and health monitoring of civil structures

  • Rao, A. Rama Mohan;Anandakumar, Ganesh
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.465-492
    • /
    • 2008
  • Proper pretest planning is a vital component of any successful vibration test on engineering structures. The most important issue in dynamic testing of many engineering structures is arriving at the number and optimal placement of sensors. The sensors must be placed on the structure in such a way that all the important dynamic behaviour of a structural system is captured during the course of the test with sufficient accuracy so that the information can be effectively utilised for structural parameter identification or health monitoring. Several optimal sensor placement (OSP) techniques are proposed in the literature and each of these methods have been evaluated with respect to a specific problem encountered in various engineering disciplines like aerospace, civil, mechanical engineering, etc. In the present work, we propose to perform a detailed characteristic evaluation of some selective popular OSP techniques with respect to their application to practical civil engineering problems. Numerical experiments carried out in the paper on various practical civil engineering structures indicate that effective independence (EFI) method is more consistent when compared to all other sensor placement techniques.

Seismic Performance Evaluation of bridge using DCM and CSM (변위계수법과 역량스펙트럼 방법을 이용한 교량의 내진성능 평가)

  • Nam Wang-Hyun;Song Jong-Keol;Chung Yeong-Hwa
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1017-1024
    • /
    • 2006
  • Capacity spectrum method(CSM) of ATC-40(1996) and displacement coefficient method(DCM) of FEMA-273(1997) are applied to evaluate the seismic performance of bridges. In this study, equivalent response is obtained from nonlinear static analysis for the 3spans continues bridge and nonlinear maximum displacement response is calculated using CSM and DCM. Nonlinear maximum displacement response of DCM is larger than this of CSM. It is method that DCM can evaluate target displacement and ductility of structural to be easy and simple, but tend to overestimate the maximum displacement response. Therefore, this method is mainly used at preparation design level to evaluate the structural response. It is not desirable to evaluate the seismic performance using DCM.

  • PDF

Property of the Mean Errors of Nonlinear Direct Spectrum Method with Structure Parameters (구조물 조건에 따른 비선형 직접스펙트럼법의 평균오차 특성)

  • 강병두;전대한;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.211-218
    • /
    • 2003
  • Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. Seismic evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. Nonlinear response history analysis(NRHA) is the most rigorous procedure to compute seismic performance among various inelastic analysis methods. But nonlinear analysis procedures necessitate more practical and reliable tools for predicting seismic behavior of structures. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) system. The purpose of this paper is to investigate the accuracy and reliability of this method from a point of view of various earthquakes and structure parameters.

  • PDF

Evaluation of manufacturing process and structural strength for the composites carbody (신소재 복합재 철도차량 차체 제작기술 및 구조강도 평가)

  • Jeong Jong-Cheol;Lee Sang-Jin;Cho Sea-Hyun;Seo Sung-Il;Kim Chun-Gon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.403-408
    • /
    • 2005
  • This research presents the manufacturing process and the structural strength assessment for the hybrid composite carbody. In this study, the manufacturing process for carbody with length of 23m was explained. The composite carbody was fabricated as one body using autoclave with length of 30m and 5m diameter. The structural behavior of the carbody under the 3-point supporting and the natural frequency were evaluated as well. In addition, the test results were compared with the numerical one. From the tests, the structural strength of the hybrid composite carbody was assessed.

  • PDF

Fatigue life evaluation of Electric Car Bogie Frame (전동차 대차 프레임의 피로수명 평가)

  • Seo, Jung-Won;Kwon, Sung-Tae;Kim, Jeong-Guk
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1517-1522
    • /
    • 2007
  • Bogie frame of the electric car is an important structural member for the support of vehicle loading. In general, more than 25 years' durability is necessary. A lot of study has been carried out for the prediction of the structural integrity of the bogie frame in experimental and theoretical domains. The objective of this paper is to estimate the structural integrity of the bogie frame of an electric car, which is under the running test. F.E. analysis of bogie frame was performed to find locations for attaching strain gage and to estimate static stress. Dynamic stress were measured by using strain gage in order to evaluate the structural integrity of the bogie frame.

  • PDF

STRUCTURAL INTEGRITY EVALUATION OF NUCLEAR FUEL WITH REDUCED WELDING CONDITIONS

  • Park, Nam-Gyu;Park, Joon-Kyoo;Suh, Jung-Min;Kim, Kyu-Tae;Jeon, Kyeong-Lak
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.347-354
    • /
    • 2009
  • Welding is required for a connection between two different components in the nuclear fuel of a pressurized water reactor. This work relies on a mechanical experiment and analytic results to investigate the structural integrity of nuclear fuel in a situation where some components are not welded to each other. A series of lateral vibration tests are performed in a test facility, and the test structures are examined in terms of dynamic behavior. In the tests, the displacement signal at every grid structure that sustains fuel rods is measured and processed to identify the dynamic properties. The fluid-elastic stability of the structure is also analyzed to evaluate susceptibility to a cross flow with an assumed conservative cross flow distribution. The test and analysis results confirm that the structural integrity can be maintained even in the absence of some welding connections.

Assessment of Creep-Fatigue Crack Growth for a High Temperature Component (고온 기기의 크리프-피로 균열성장 평가)

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Lee, Jae-Han
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.264-268
    • /
    • 2008
  • An assessment of creep-fatigue crack behavior is required to ensure the structural integrity for high temperature components such as fast breeder reactor structures or thermal power plant components operating at an elevated temperature. In this study, an evaluation of creep-fatigue crack growth has been carried out according to the French assessment guide of the RCC-MR A16 for austenitic stainless steel structures. The assessment procedures for creep-fatigue crack growth in the recent version of the A16 (2007 edition) have been changed considerably from the previous version (2002 edition) and the material properties (RCC-MR Appendix A3) have been changed as well. The impacts of those changes on creep-fatigue crack growth behavior are quantified from the assessments with a structural model. Finally the assessment results were compared with the observed images obtained from the structural tests of the same structural specimen.

  • PDF

Structural Optimization By Adaptive Simulated Annealing's Cooling Schedule Change (어댑티브 시뮬레이티드 어넬링의 냉각스케줄에 따른 구조최적설계)

  • Jung, Suk-Hoon;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1436-1441
    • /
    • 2003
  • Recently, simulated annealing algorithms have widely been applied to many structural optimization problems. In this paper, simulated annealing, boltzmann annealing, fast annealing and adaptive simulated annealing are applied to optimization of truss structures for improvement quality of objective function and number of function evaluation. These algorithms are classified by cooling schedule. The authors have changed parameters of ASA's cooling schedule and the influence of cooling schedule parameters on structural optimization obtained is discussed. In addition, cooling schedule of BA and ASA mixed is applied to 10 bar-truss structure.

  • PDF

Evaluation of sloshing Resistance Performance of LNG Carrier Insulation System by Fluid-Structure Interaction Analysis (유체-구조 연성 해석을 이용한 LNG 운반선 방열시스템의 내슬로싱 성능 평가)

  • Lee, Chi-Seung;Kim, Joo-Hyun;Kim, Wha-Soo;Noh, Byeong-Jae;Kim, Myung-Hyun;Lee, Jae-Myung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.557-560
    • /
    • 2011
  • In the present paper, the sloshing resistance performance of an LNG carrier insulation system is evaluated by fluid-structure interaction (FSI) analysis. For this analysis, the arbitrary Lagrangian Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG motion of a KC-1 type LNG carrier cargo tank. In addition, the global-local analysis method is introduced to reduce computational time and cost. The global model is built from shell elements to reduce the sloshing analysis time. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.

  • PDF

An Evaluation of Structural Test and Analysis for Composites Vehicle Structures of Automatic Guideway Transit (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 평가)

  • Ko, Hee-Young;Shin, Kwang-Bok;Cho, Se-Hyun;Kim, Dae-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1103-1108
    • /
    • 2009
  • This paper describes the results of structural test and finite element analysis for rubber wheel-type Automatic Guideway Transit(AGT) made of aluminum honeycomb sandwich composites with WR580/NF4000 glass-fabric epoxy laminate face sheets. The static tests of vehicle structure were conducted according to JIS E7l05. These static tests have been done under vertical load, compressive load and 3-point support load. The structural integrity of AGT vehicle structure was evaluated by displacement, stress obtained from LVDT and strain gauges, and natural frequency. And finite element analysis using Ansys v11.0 was done to compare with the results of static test. The result showed that the results of structural integrity for static test were in an good agreement with these of finite element analysis.

  • PDF