• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.036 seconds

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

Smart monitoring system using electromagnetic waves to evaluate the integrity of reinforced concrete structural elements

  • Jong-Sub Lee;Dongsoo Lee;Youngdae Kim;Goangseup Zi;Jung-Doung Yu
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.293-306
    • /
    • 2023
  • This study proposes and demonstrates a smart monitoring system that uses transmission lines embedded in a reinforced concrete structure to detect the presence of defects through changes in the electromagnetic waves generated and measured by a time-domain reflectometer. Laboratory experiments were first conducted to identify the presence of voids in steel-concrete composite columns. The results indicated that voids in the concrete caused a positive signal reflection, and the amplitude of this signal decreased as the water content of the soil in the void increased. Multiple voids resulted in a decrease in the amplitude of the signal reflected at each void, effectively identifying their presence despite amplitude reduction. Furthermore, the electromagnetic wave velocity increased when voids were present, decreased as the water content of the soil in the voids increased, and increased with the water-cement ratio and curing time. Field experiments were then conducted using bored piles with on-center (sound) and off-center (defective) steel-reinforcement cage alignments. The results indicated that the signal amplitude in the defective pile section, where the off-center cage was poorly covered with concrete, was greater than that in the pile sections where the cage was completely covered with concrete. The crosshole sonic logging results for the same defective bored pile failed to identify an off-center cage alignment defect. Therefore, this study demonstrates that electromagnetic waves can be a useful tool for monitoring the health and integrity of reinforced concrete structures.

Evaluation of Fatigue Life of Electro-Mechanical Actuator for Front Wheel Steering (전륜 조향용 전기식 작동기 피로수명 평가)

  • Young-Cheol Kim;Hyun-gi Kim;Dong-Hyeop Kim;Sang-Woo Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.126-132
    • /
    • 2023
  • Recently, the consideration of eco-friendly technology to reduce greenhouse gas is being emphasized in the aviation field. Various studies for applying electro-mechanical actuators that control mechanical linear and rotational movements using electricity as the primary power source are in progress. In this study, the fatigue analysis of the electro-mechanical actuator for the front wheel steering of a single aisle aircraft was carried out. A unit load stress table was constructed for the vulnerable part selected through structural analysis, and the representative stress for each load profile was calculated using the unit load stress table constructed for the vulnerable part. Then, individual profiles of representative stress group were extracted from continuous load profiles by applying the rainflow counting method. The damage of each profile was calculated by applying the S-N diagram. Finally, the total damage in the vulnerable parts was calculated by the linear cumulative damage law, and the fatigue life of the electro-mechanical actuator for the front wheel steering of a single aisle aircraft was evaluated.

A Cognitive-social Model for Risk Perception of Terrorism (테러 위험지각의 인지-사회 모형)

  • Hyunju Lee ;Young-Ai Lee
    • Korean Journal of Culture and Social Issue
    • /
    • v.17 no.4
    • /
    • pp.485-503
    • /
    • 2011
  • This study was to develope a structural model for risk perception and individual response against terrorism, including several psychological factors - cognitive, social and emotional factors. In this model we measured perceived probability of terrorism, perceived seriousness of the aftermath, and perceived coping(cognitive factors), trust in authorities, in expert group and in preparedness of institutions(social factors), fear and worry(emotional factors), individual preparedness, information seeking, information analysis, and checking relational network(individual behavior responses). Major finding was that cognitive and social factors influenced on emotional factors and then emotional factors influenced on the individual responses. The perceived coping, which one of cognitive factors was linked with individual responses directly and indirectly via emotion factors. We discussed the importance of perceived coping in preparing for terrorism.

  • PDF

Projecting the spatial-temporal trends of extreme climatology in South Korea based on optimal multi-model ensemble members

  • Mirza Junaid Ahmad;Kyung-sook Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.314-314
    • /
    • 2023
  • Extreme climate events can have a large impact on human life by hampering social, environmental, and economic development. Global circulation models (GCMs) are the widely used numerical models to understand the anticipated future climate change. However, different GCMs can project different future climates due to structural differences, varying initial boundary conditions and assumptions about the physical phenomena. The multi-model ensemble (MME) approach can improve the uncertainties associated with the different GCM outcomes. In this study, a comprehensive rating metric was used to select the best-performing GCMs out of 11 CMIP5 and 13 CMIP6 GCMs, according to their skills in terms of four temporal and five spatial performance indices, in replicating the 21 extreme climate indices during the baseline (1975-2017) in South Korea. The MME data were derived by averaging the simulations from all selected GCMs and three top-ranked GCMs. The random forest (RF) algorithm was also used to derive the MME data from the three top-ranked GCMs. The RF-derived MME data of the three top-ranked GCMs showed the highest performance in simulating the baseline extreme climate which was subsequently used to project the future extreme climate indices under both the representative concentration pathway (RCP) and the socioeconomic concentration pathway scenarios (SSP). The extreme cold and warming indices had declining and increasing trends, respectively, and most extreme precipitation indices had increasing trends over the period 2031-2100. Compared to all scenarios, RCP8.5 showed drastic changes in future extreme climate indices. The coasts in the east, south and west had stronger warming than the rest of the country, while mountain areas in the north experienced more extreme cold. While extreme cold climatology gradually declined from north to south, extreme warming climatology continuously grew from coastal to inland and northern mountainous regions. The results showed that the socially, environmentally and agriculturally important regions of South Korea were at increased risk of facing the detrimental impacts of extreme climatology.

  • PDF

Structural Crack Detection Using Deep Learning: An In-depth Review

  • Safran Khan;Abdullah Jan;Suyoung Seo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.371-393
    • /
    • 2023
  • Crack detection in structures plays a vital role in ensuring their safety, durability, and reliability. Traditional crack detection methods sometimes need significant manual inspections, which are laborious, expensive, and prone to error by humans. Deep learning algorithms, which can learn intricate features from large-scale datasets, have emerged as a viable option for automated crack detection recently. This study presents an in-depth review of crack detection methods used till now, like image processing, traditional machine learning, and deep learning methods. Specifically, it will provide a comparative analysis of crack detection methods using deep learning, aiming to provide insights into the advancements, challenges, and future directions in this field. To facilitate comparative analysis, this study surveys publicly available crack detection datasets and benchmarks commonly used in deep learning research. Evaluation metrics employed to check the performance of different models are discussed, with emphasis on accuracy, precision, recall, and F1-score. Moreover, this study provides an in-depth analysis of recent studies and highlights key findings, including state-of-the-art techniques, novel architectures, and innovative approaches to address the shortcomings of the existing methods. Finally, this study provides a summary of the key insights gained from the comparative analysis, highlighting the potential of deep learning in revolutionizing methodologies for crack detection. The findings of this research will serve as a valuable resource for researchers in the field, aiding them in selecting appropriate methods for crack detection and inspiring further advancements in this domain.

Application Verification of AI&Thermal Imaging-Based Concrete Crack Depth Evaluation Technique through Mock-up Test (Mock-up Test를 통한 AI 및 열화상 기반 콘크리트 균열 깊이 평가 기법의 적용성 검증)

  • Jeong, Sang-Gi;Jang, Arum;Park, Jinhan;Kang, Chang-hoon;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.95-103
    • /
    • 2023
  • With the increasing number of aging buildings across Korea, emerging maintenance technologies have surged. One such technology is the non-contact detection of concrete cracks via thermal images. This study aims to develop a technique that can accurately predict the depth of a crack by analyzing the temperature difference between the crack part and the normal part in the thermal image of the concrete. The research obtained temperature data through thermal imaging experiments and constructed a big data set including outdoor variables such as air temperature, illumination, and humidity that can influence temperature differences. Based on the collected data, the team designed an algorithm for learning and predicting the crack depth using machine learning. Initially, standardized crack specimens were used in experiments, and the big data was updated by specimens similar to actual cracks. Finally, a crack depth prediction technology was implemented using five regression analysis algorithms for approximately 24,000 data points. To confirm the practicality of the development technique, crack simulators with various shapes were added to the study.

A Study on the Near Construction Range Considering the Factors Affecting the Stability of Water Tunnel (수로터널 안정성에 미치는 요소를 고려한 근접시공범위에 대한 연구)

  • Mingyu Lee;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.5-12
    • /
    • 2023
  • Recently, due to urban development and expansion, construction plans have been increasing adjacent to existing tunnel structures such as subways, roads, and large pipelines. Structural plans adjacent to existing tunnels have different effects on tunnel stability depending on the construction method, degree of proximity, and location of new structures. In particular, the pressure water tunnel shows a very large difference from other road tunnels and railway tunnels in geotechnical characteristics and operation characteristics. Therefore, it is necessary to review the safety zone due to adjacent construction in consideration of the geotechnical characteristics of the water tunnel and the new sturure construction method. In this study, the existing tunnel safety zone standards were investigated. A stability evaluation performed numerical analysis considering the deterioration of concrete lining in operation and the characteristics of water tunnel. In addition, the impact of vibration caused by pile construction and blasting excavation of new structures was reviewed. Based on this, a pressure water tunnel safety zone was proposed in consideration of adjacent construction.

Evaluation of Bond-Slip Behavior of High Strength Lightweight Concrete with Compressive Strength 120 MPa and Unit Weight 20 kN/m3 (압축강도 120 MPa, 단위중량 20 kN/m3 고강도 경량 콘크리트 부착-슬립 거동 평가)

  • Dong-Gil Gu;Jun-Hwan Oh;Sung-Won Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The demand for lightweight and high-strength materials is increasing. However, studies on the bond of concrete and reinforcing bars for high-strength lightweight concrete with a compressive strength of 120 MPa and a unit weight of 20 kN/m3 to structural members are lacking. Therefore, in this paper, 108 specimens of high-strength lightweight concrete with a compressive strength of 120 MPa and a unit weight of about 20 kN/m3 were fabricated, a direct pull-out test was performed, and the bond characteristics were evaluated by comparing the test results with design code. Compared to the decrease in unit weight, the solid bubble shows relatively little reduction in compressive strength and modulus of elasticity. It was f ound to have larger slip and parameter values than concrete with low compressive strength and unit weight.

Exploration on the Development and Characteristics of Composites Painting in the Contemporary Art Ecology

  • Wang Jing Jing
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.232-240
    • /
    • 2023
  • The ecological expression of art in modern society takes the harmonious developmental relationship between man and nature as an element and combines it with the various manifestations of painting as an expression of ecological artistic development. The necessary relationship for the harmonious development of nature is accurately articulated, and the ecological changes in people are expressed in integrated materials that inspire human reflection. In the pursuit of material pleasures, mankind is neglectful and indifferent to the environment. The development of composite painting in art and ecology is a process that more reveres the harmony between man and nature as well as satisfying the creative value of the work. After systematic evaluation and research, people have engaged in various structural forms of composite art painting development in the long history of art development, focusing on the integration of environmental and ecological culture. In the process of nature education going through development, the comprehensive practical development of nature education is enhanced and efforts are made to feel new ecological art ideas and new ways of valuing environmental protection. In this paper, an observational study of eco-art will be carried out, starting from the theory of hierarchical division and analyzing the contradictory relationship between man and nature. Recognize nature, understand it and feel it through eco-art painting. The analysis of the contradictory relationship between man and nature is combined with the identification of various types of information that give value to the environmental protection public, and the combination of ecological painting and nature art to achieve an upgrade of the environmental protection idea of the value of painting. In the development of artistic ecological comprehensive painting, it is necessary to put forward technical requirements and standards that meet the development of modern industry according to the characteristics and methods of ecological painting. The author of this paper discusses the necessity and social value of artistic ecological painting creation from the artist's point of view, expounds the practical achievements of ecological painting from the perspective of the history and present situation of the development of ecological aesthetics at home and abroad, and gives the concept and creative method of contemporary art comprehensive material painting in combination with his own actual situation.