• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.029 seconds

A Scheduling Algorithm for the Synthesis of a Pipelined Datapath using Collision Count (충돌수를 이용한 파이프라인 데이타패스 합성 스케쥴링 알고리즘)

  • Yu, Dong-Jin;Yoo, Hee-Jin;Park, Do-Soon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.11
    • /
    • pp.2973-2979
    • /
    • 1998
  • As this paper is a scheduling algorithm for the synthesis of a pipelined datapath under resource constraints in high level synthesis, the proposed heuristic algorithm uses a priority function based on the collision count of resourecs. In order to schedule the pipelined datapath under resource constraints, we define the collision count and the priority function based on the collision count, a number of resource, and the mobility of operations to resolve a resource collision. The proposed algorithm supports chaining, multicycling, and structural pipelining to design the realistic hardware. The evaluation of the Performance is compared with other systems using the results of the synthesis for a 16point FIR filter and a 5th order elliptic wave filter, where in most cases, the optimal solution is obtained.

  • PDF

Capacity evaluation of PC-slab composite actions for the railway steel plate girder according to an experimental construction (PC-Slab 합성 철도판형교 유도상화 시험부설에 따른 성능 비교평가)

  • Min, Kyung-Ju;Lee, Sung-Uk;Choi, Hyung-Soo;Woo, Yong-Keun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.697-706
    • /
    • 2011
  • There are more than 800 railway steel plate girder bridges which are in use and the total length is approximately 50 km. Among these, it shall be pointed out that non-ballast rail systems which lay on wood sleepers are the most critical members. To strengthen this type of structures, mainly two methods have been applied. The first one is the most typical method which is to replace the girders with slab girder system or steel composite girders and to add ballast. It is not uncommon that the construction cost of substructure is more than ten time higher than that of superstructures and even in this case, the structural uncertainty for the substructures is not diminished. To resolve above mentioned problems, new method was developed to rehabilitate railway steel girder bridge by adding PC-slab using transport equipment. Using this method, substructure strengthen is rarely required because the additional weight to the bridge superstructure is only up to 1.0t/m. Also it was possible to save the construction cost by reducing construction duration and by simplifying the construction process. Experimental construction was performed for Jewon bridge and measurements were performed before and after construction to verify the bridge capacity.

  • PDF

Strength Evaluation of Telescopic Sliding Doorstep Equipment for Railway Vehicle (철도차량 슬라이드식(텔레스코픽) 승강문 스텝의 강도평가)

  • Kim, Chul-Su;Park, Min-Heung
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.352-356
    • /
    • 2012
  • Heights of a platform above the rail for the passenger train in the country are classified into two categories such as the low level (500mm; mainline) and the high level (1,135mm; metropolitan subway line) platforms. In order to operate similarly both a mainline railroad and a metropolitan subway line, as the requisite door safety system, it is necessary to develop the doorstep equipment of the rolling stock regardless of both the low and high level platforms. In this study, Structural analysis and mechanical strength test of doorstep equipments used for two types of platforms are performed on the supposition that the train only for the low level platform could stop in the both low and high level platforms.

Damage mechanics approach and modeling nonuniform cracking within finite elements for safety evaluation of concrete dams in 3D space

  • Mirzabozorg, H.;Kianoush, R.;Jalalzadeh, B.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • An anisotropic damage mechanics approach is introduced which models the static and dynamic behavior of mass concrete in 3D space. The introduced numerical approach is able to model non-uniform cracking within the cracked element due to cracking in Gaussian points of elements. The validity of the proposed model is considered using available experimental and theoretical results under the static and dynamic loads. No instability and stress locking is observed in the conducted analyses. The Morrow Point dam is analyzed including dam-reservoir interaction effects to consider the nonlinear seismic behavior of the dam. It is found that the resulting crack profiles are in good agreement with those obtained from the smeared crack approach. It is concluded that the proposed model can be used in nonlinear static and dynamic analysis of concrete dams in 3D space and enables engineers to define the damage level of these infrastructures. The performance level of the considered system is used to assess the static and seismic safety using the defined performance based criteria.

An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges : (1) Introduction to numerical model

  • Kwak, Hyo-Gyoung;Shin, Dong-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.215-238
    • /
    • 2009
  • This paper introduces an improved modal pushover analysis (IMPA) which can effectively evaluate the seismic response of multi-span continuous bridge structures on the basis of modal pushover analysis (MPA). Differently from previous modal pushover analyses which cause the numerical unstability because of the occurrence of reversed relation between the pushover load and displacement, the proposed method eliminates this numerical instability and, in advance the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio for each dynamic mode at the post-yielding stage together with an approximate elastic deformation. In addition to these two introductions, the use of an effective seismic load, calculated from the modal spatial force and applied as the distributed load, makes it possible to predict the dynamic responses of all bridge structures through a simpler analysis procedure than those in conventional modal pushover analyses. Finally, in order to establish validity and applicability of the proposed method, correlation studies between a rigorous nonlinear time history analysis and the proposed method were conducted for multi-span continuous bridges.

An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges: (2) Correlation study for verification

  • Kwak, Hyo-Gyoung;Shin, Dong Kyu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.239-255
    • /
    • 2009
  • In the companion paper, a simple but effective analysis procedure termed an Improved Modal Pushover Analysis (IMPA) is proposed to estimate the seismic capacities of multi-span continuous bridge structures on the basis of the modal pushover analysis, which considers all the dynamic modes of a structure. In contrast to previous studies, the IMPA maintains the simplicity of the capacity-demand curve method and gives a better estimation of the maximum dynamic response in a bridge structure. Nevertheless, to verify its applicability, additional parametric studies for multi-span continuous bridges with large differences in the length of adjacent piers are required. This paper, accordingly, concentrates on a parametric study to review the efficiency and limitation in the application of IMPA to bridge structures through a correlation study between various analytical models including the equivalent single-degree-of-freedom method (ESDOF) and modal pushover analysis (MPA) that are usually used in the seismic design of bridge structures. Based on the obtained numerical results, this paper offers practical guidance and/or limitations when using IMPA to predict the seismic response of a bridge effectively.

Application of the ANFIS model in deflection prediction of concrete deep beam

  • Mohammadhassani, Mohammad;Nezamabadi-Pour, Hossein;Jumaat, MohdZamin;Jameel, Mohammed;Hakim, S.J.S.;Zargar, Majid
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.323-336
    • /
    • 2013
  • With the ongoing development in the computer science areas of artificial intelligence and computational intelligence, researchers are able to apply them successfully in the construction industry. Given the complexities indeep beam behaviour and the difficulties in accurate evaluation of its deflection, the current study has employed the Adaptive Network-based Fuzzy Inference System (ANFIS) as one of the modelling tools to predict deflection for high strength self compacting concrete (HSSCC) deep beams. In this study, about 3668measured data on eight HSSCC deep beams are considered. Effective input data and the corresponding deflection as output data were recorded at all loading stages up to failure load for all tested deep beams. The results of ANFIS modelling and the classical linear regression were compared and concluded that the ANFIS results are highly accurate, precise and satisfactory.

A Survey of Utilizing Status and Demand for Medical Devices in Traditional Korean Medicine (한방의료기기 사용 현황 및 개발 수요에 대한 조사 연구)

  • Nam, Dong-Hyun
    • The Journal of Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.69-79
    • /
    • 2013
  • Objectives: The aim of this survey was to investigate utilization, intended use, problems with and demand for medical devices by surveying members of the traditional Korean medical society. Methods: We distributed questionnaires to 13,957 traditional Korean medical doctors via e-mail, and received replies from 1,225. The questionnaire consisted of 4 multiple-choice questions for survey respondent information, 8 multiple-choice questions about the status of medical devices utilizing, and a short answer question about the demand for medical devices. Results: Use of medical devices in traditional Korean medical clinics is common. Diagnostic medical devices are mainly used to assess the patient's condition and to establish a close rapport with clients. In case of therapeutic medical devices, they are usually used for secondary treatment. Issues with traditional Korean medical devices currently in use were ineligibility for national health insurance, low reliability, uncertain validity, and high price. In development of traditional Korean medical equipment, the need for diagnostic medical devices was greater than for therapeutic, and the need for the recording and analysis of medical image data and visualization of medical information was great. Conclusions: There is growing demand for facilitating the development and commercialization of traditional Korean medical devices. To satisfy this demand, research on evaluation indicators that reflect functional and structural clinical information and how to clinically assess the indicators should proceed.

Infilled frames: developments in the evaluation of the stiffening effect of infills

  • Papia, M.;Cavaleri, L.;Fossetti, M.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.675-693
    • /
    • 2003
  • In order to consider the modified seismic response of framed structures in the presence of masonry infills, proper models have to be formulated. Because of the complexity of the problem, a careful definition of a diagonal pin-jointed strut, able to represent the horizontal force-interstorey displacement cyclic law of the actual infill, may be a solution. In this connection the present paper shows a generalized criterion for the determination of the ideal cross-section of the strut mentioned before. The procedure is based on the equivalence between the lateral stiffness of the actual infilled frame scheme during the conventional elastic stage of the response and the lateral stiffness of the same frame stiffened by a strut at the same stage. Unlike the usual empirical approaches available in the literature, the proposed technique involves the axial stiffness of the columns of the frame more than their flexural stiffness. Further, the influence of the bidimensional behaviour of the infill is stressed and, consequently, the dependence of the dimensions of the equivalent pin-jointed strut on the Poisson ratio of the material constituting the infill is also shown. The proposed approach is extended to the case of infills with openings, which is very common in practical applications.

Design Improvement of the Driving Bevel Gear in Transmissions of a Tracked Vehicle (궤도차량 변속기 구동용 베벨기어의 개선설계)

  • Jung, Jae-Woong;Kim, Kwang-Pil;Ji, Hyun-Chul;Moon, Tae-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • Transmission of a tracked vehicle designed for multiple functions such as steering, gear-shifting, and braking is a core component of heavy vehicle to which the power is transferred based on combined technology of various gears, bearing, and fluid machineries. Robustness and durability of transmission, however, have been issued due to a large number of driving units and sub-components inside its body. The bevel gears are major components for the transmission of power in a transmission. Increasing the tooth surface roughness and chamfering of the bevel gears, especially, we aim to improve the quality of transmission. In this study, design structural evaluation is conducted on bevel gears of transmission for tracked vehicle using the ROMAX-DESIGNER program. By doing so, design safety of the bevel gears has been evaluated based on the gear strength theory of ANSI/AGMA 2003 B97 standard.