• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.028 seconds

Structural Integrity Assessment of High-Strength Anchor Bolt in Nuclear Power Plant based on Fracture Mechanics Concept (원자력발전소 고강도 앵커 볼트의 파괴역학적 건전성평가)

  • Lim, Eun-Mo;Huh, Nam-Su;Shim, Hee-Jin;Oh, Chang-Kyun;Kim, Hyun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.875-881
    • /
    • 2013
  • The failure of a bolted joint owing to stress corrosion cracking (SCC) has been considered one of the most important structural integrity issues in a nuclear power plant. In this study, the failure possibility of bolting, which is used to support the steam generator of a pressurized water reactor, owing to SCC and brittle fracture was evaluated in accordance with guidelines proposed by the Electric Power Research Institute, which are called the Reference Flaw Factor method. For this evaluation, first, detailed finite element stress analyses were conducted to obtain the actual nominal stresses of bolting in which either service loads or bolt preloads were considered. Based on these nominal stresses, the structural integrity of bolting was addressed from the viewpoints of SCC and toughness. In addition, the accuracy of the EPRI Reference Flaw Factor for assessing bolting failure was investigated using finite element fracture mechanics analyses.

Uncertainties Influencing the Collapse Capacity of Steel Moment-Resisting Frames (철골모멘트 골조의 붕괴성능에 영향을 미치는 불확실성 분석)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • In order to exactly evaluate the seismic collapse capacity of a structure, probabilistic approach is required by considering uncertainties related to its structural properties and ground motion. Regardless of the types of uncertainties, they influence on the seismic response of a structures and their effects are required to be estimated. An incremental dynamic analysis(IDA) is useful to investigate uncertainty-propagation due to ground motion. In this study, a 3-story steel moment-resisting frame is selected for a prototype frame and analyzed using the IDA. The uncertainty-propagation is assessed with categorized parameters representing epistemic uncertainties, such as the seismic weight, the inherent damping, the yield strength, and the elastic modulus. To do this, the influence of the uncertainty-propagation to the seismic collapse capacity of the prototype frame is probabilistically evaluated using the incremental dynamic analyses based on the Monte-Carlo simulation sampling with the Latin hypercube method. Of various parameters related to epistemic uncertainty-propagation, the inherent damping is investigated to be the most influential parameter on the seismic collapse capacity of the prototype frame.

A Temporal Structure Analysis of Forest Landscape Patterns using Landscape Indices in the Nakdong River Basin (경관지수를 활용한 낙동강 유역 산림경관의 시계열적 패턴 분석)

  • Jung, Sung-Gwan;Oh, Jeong-Hak;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.145-156
    • /
    • 2005
  • An artificial disturbance like forest fragmentation has affected the sustainability of forest ecosystem. Therefore, in order to manage the forest ecosystem efficiently needed to analyze quantity and quality (structural pattern) of forest simultaneously. This study analyzed the structural patterns of forest landscape to provide a basic data for evaluation and management of forest ecosystem in Nakdong River Basin during 10 years from 1980s to 1990s using landscape indices and GIS methods. Forest distribution maps and 6 landscape indices(LPI, PD, ED, MSI, CPLAND, IJI) for the analysis were reconstructed from land-cover maps constructed by Ministry of Environment and pearson correlation analysis. According to the structural analysis of forest landscape using landscape indices, the forest fragmentation of watersheds along the main stream of the Nakdong river was more severe than any other watersheds. Futhermore, the Nakong-sangju and Nakdong-miryang watersheds had unstable forest structures as well as least amount of forest quantity. Thus, these watersheds need significant amount of forest through a new forest management policy considering local environmental conditions. The connectivity between forests in local regions should be considered as well.

  • PDF

Development and Evaluation of Hollow-head Precast Reinforced Concrete Pile (말뚝머리 중공 프리캐스트 철근콘크리트 말뚝의 성능 평가)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • Due to the economic growth and development of construction technology, a role of foundation to resist heavy loads has been increased. In this present study to improve the structural performance of reinforced concrete pile, the precast HPC pile reinforced with rebar and filling concrete was developed and the strength of pile was predicted based on the limit state design method. The safety of HPC pile strength was evaluated by comparing with the design values. The geometry of HPC pile is a decagon cross section with a maximum width of 500 mm and a minimum width of 475 mm, and the hollow head of pile thickness is 70 mm. The inner area of the hollow head part was made as the square ribbed shape presented in the limit state design code in order to achieve horizontal shear strength between pile concrete and filling concrete. From the shear test results, it was found that the stable shear strength were secured without abrupt failure until maximum load stage despite the shear cracks was found. Shear strength is 135% and 119% higher than that of design value calculated from limit state design code. The driving test results of HPC pile according to the presence of additional reinforcement showed the outstanding crack resistance against impact loads condition. From the bending test results the flexural load between PHC pile and HPC pile was 1.51 times and 1.48 times higher than that of the design flexural load of conventional PHC pile.

Study on Rheological Properties of Mortar for the Application of 3D Printing Method (3D 프린팅 공법 적용을 위한 모르타르 구성성분 변화에 따른 레올로지 특성 연구)

  • Lee, Hojae;Kim, Won-Woo;Moon, Jae-Heum
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2018
  • In this study, an experiment was conducted to analyze mortar based rheology for 3D printing method application. The tendency of rheological properties due to the change of W/B, binder type, replacement ratio, and super plasticizer which have a great influence on the flow characteristics of concrete was experimentally analyzed. Experiments were carried out by dividing into paste and mortar. In the paste experiment, rheology was analyzed by setting W/B, binder type, replacement ratio, and super plasticizer dosage as main variables. In the mortar experiment, the rheological properties of W/B and sand ratio were analyzed. As a result, as the W/B was increased, the viscosity decreased and the FA ratio to replace FA increased and the viscosity increased. In order to increase the fluidity, substitution of only 5% of SF reduces the shear stress and the viscosity is reduced by about 83%. Mortar rheological evaluation shows that there is a critical section where a large change occurs in the W/B 30 to 40% section. Also, in the same W/B, it is analyzed that there is a critical section where the shear stress increases more than twice in the sand ratio of 50~60%.

An Evaluation of Shear Strength of Plain HVFAC Concrete by Double Shear Test Method (2면전단시험법에 의한 무근 HVFAC 콘크리트의 전단강도 평가)

  • Lee, Hyung-Jib;Suh, Jeong-In;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.261-266
    • /
    • 2017
  • In this study, to determine the shear properties, experiments on the shear behavior of plain concrete with the high volume fly ash cement by double shear test were performed. Test parameters are fly ash content and concrete compressive strength. Experimental results show the tendency that the shear strength similarly increases with an increase in the compressive strength as is generally known. The concrete shear strength formula proposed in the concrete structural design code of KCI shows a similar tendency to the experimental results, and It is expected that the shear strength of the high volume fly ash cement concrete can be applied with the formula given in the concrete structural design code of KCI. When considering the fly ash content ratio, the shear strength of high volume fly ash cement concrete according to fly ash conctent ratio shows as having a far greater correlation than if it is not considered to fly ash content ratio. So, even though existing code can be appliable for non consideration of the fly ash content ratio, we proposed a formula that is much more relevant than that of concrete structural design code of KCI.

Centralized Controller High-altitude Work Car Elevations Lift Structure Safety Assessment (중앙집중식 컨트롤러 고소작업차의 고소리프트의 구조안정성 평가)

  • Kim, Jun-tae;Lee, Gi-yeong;Lee, Sang-sik;Park, Won-yeop
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • This study was conducted as a post - study on the development of a centralized controller and a hydraulic lift system including structural analysis and remote control for the development of a vertically elevated car. The safety review was carried out through the structural modification of the elevator lift which was developed during the previous research. 3D modeling was performed with Solidworks, and a model of finite element was created through Hypermesh S / W. In addition, the loading environment of the work vehicle for the evaluation is a condition in which the loading amount is 250 kg per position (total, upper, upper, lower, and lower) on the work table, ), The structural analysis was carried out under the condition that the load was 600 kg, and safety was examined in various aspects. As a result, when the allowable load of 250 kg and the excess load of 600 kg are excluded (except Case-11), the stress level is below the yield strength. In the case of Case-11, there is a region exceeding the yield strength at the center support portion of the safety bar at the upper end even after excluding the component which generates the maximum stress, but it does not affect the safety aspect of the whole structure Respectively. Looking at the deflection results, it can be seen that in all cases the maximum deflection occurs in the same table, and the tendency of sagging in both 250 kg and 600 kg is the same.

Shear Resistance of Light-gauge Steel Stud Wall infilled with light-weight foamed mortar (경량기포모르터와 합성한 경량형강 벽체의 전단 저항)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.397-406
    • /
    • 2004
  • This paper presents the test and evaluation results on the shear strength and stiffness of a light steel stud wall from a lightweight foamed mortar (lightweight hybrid wall). The use of a lightweight foamed mortar was aimed at improving structural performance, thermal performance, and finish. Studiesshowed that it did not affect thermal performance, but it contributed to structural performance and finish when the unit weight was more than 0.8 (Editor's note: Please indicate the unit of measurement.). In this study, 14 specimens-whose parameters included the specific gravity of the lightweight foamed mortar (0.6, 0.8, 1.0, 1.2), the spacing of the stud (450 mm, 600 mm, or 900 mm), finishing materials (such as lightweight foamed mortar, OSB, and gypsum board), and bracing-were manufactured. Three typical, steel house-framing specimens were added to compare the test results with the 14 specimens. The results of in-plane shear tests show that the use of lightweight foamed mortar (1.15~5.38 times stronger, 1.45~13.7 times stiffer) results in ultimate strength and initial stiffness. In addition, it was possible to widen the stud spacing to up to 900 mm without decreasing shear strength. It was very important to prevent the lightweight foamed mortar from shrinking and to secure the adhesion between the steel stud and the lightweight foamed mortar to improve structural performance.

Evaluation on Transverse Load Performance of Lightweight Composite Panels (경량 복합패널의 분포압 강도 성능 평가)

  • Kang, Su-Min;Hwang, Moon-Young;Kim, Sung-Tae;Cho, Young-Jun;Lee, Byung-yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.146-157
    • /
    • 2018
  • Over the last 10 years, the number of disasters has been increasing in Korea. As a result, the need for temporary residences or shelters for disaster conditions is increasing. In this study, post-disaster refugees housing was developed using lightweight composite panels that are lighter than the materials that make up the existing shelter. To accomplish this, the structural performance of the lightweight composite panel was validated. Among the performance tests on the panels, the transverse load test was conducted according to the ASTM E 72 criteria. As a result of the experiment, when each specimen was subjected to a uniformly distributed load, the allowable load was determined according to the span. All the experiments were ended due to a loss of adhesive at the junction of the skin and core. Further analysis was conducted to calculate the shear stress when the junction was dropped. The mean shear stress at the adhesive surface of a specimen, 150 mm and 200 mm in thickness, was 0.0170MPa and 0.0156MPa, respectively. This suggests that similar values were obtained from panels of equal thickness. In addition, this stress provides a criterion of judgment that could be used to inspect the structural performance of the panels. The performance of the panel was evaluated based on the allowable load, but it may be possible to increase the strength of the lightweight composite panel by improving the joining method to avoid separation from the junction.

Analysis on Reactions of Full-Scale Airframe Static Structural Test (항공기 전기체 정적구조시험의 반력 분석)

  • Shim, Jae-yeul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.195-205
    • /
    • 2020
  • This study addresses analysis on reactions which are induced in restraint system for airframe full-scale static structural test. This system restraints 6 degrees of freedom of a test article. It is valuable to study evaluating test error through analysis on the reactions which include all errors in a test. It is required to calculate fistly right reactions for the evaluation. This study focuses on calculation of the right reactions. The reaction is represented by sum of nominal reaction(Rn) and testing error reactions(Rce, Rerr) and is analyzed by two steps (inital vs relative reaction) in this study. It would evaluate intrinsic error at 0%DLL and error induced from applying test load, separately. Based on analysis using test data of a full-scale static test(canard type aircraft), resultant force of Rces and Rce_rs are distributed within 82.8N while resultant force of Rerr_rs shows to increase upto max. 808N as load level increment. Such well distribution of the Rce within the small range is caused from TMF values characteristics which are well distributed within -30N~40N. Additionally, it is shown through qualitative analysis on three components(X0, Y0, Z0) of the relative reaction(Rerr_r) that the reactions must be calculated with considering deformation of test article to calculate correctly reactions. This study shows also that equations characterizing deformation of components of test article are required to calculate the correct reactions, the equations must include information which will be used to calculate movement of all loading points.