• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.032 seconds

Evaluation of Shear Capacity According to Transverse Spacing of Wide Beam Shear Reinforced with Steel Plate with Openings (유공형 강판으로 전단보강된 넓은 보에서의 횡방향 보강 간격에 따른 전단성능 평가)

  • Choi, Jin Woong;Kim, Min Sook;Choi, Bong-Seob;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • In this paper, transverse shear spacing and effective depth of wide beams were considered as parameters to evaluate the shear capacity of wide beam according to transverse spacing of steel plates with openings in experimental way. The eight specimens were composed of: five specimens of shear reinforced by steel plates with openings and three non-reinforced specimens. Crack, failure mode, strain and load-displacement curve of specimens were analysed. Shear contribution of shear reinforcement is evaluated and maximum transverse spacing of shear reinforcement was proposed. Shear strength of the specimen that reinforced with three stirrup legs was higher than shear strength of the specimen that reinforced with two stirrup legs. And as the effective depth increased, shear strength was increased.

Character Region Detection Using Structural Features of Hangul Vowel (한글 모음의 구조적 특징을 이용한 문자영역 검출 기법)

  • Park, Jong-Cheon;Lee, Keun-Wang;Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.872-877
    • /
    • 2012
  • We proposes the method to detect the Hangul character region from natural image using topological structural feature of Hangul grapheme. First, we transform a natural image to a gray-scale image. Second, feature extraction performed with edge and connected component based method, Edge-based method use a Canny-edge detector and connected component based method applied the local range filtering. Next, if features are not corresponding to the heuristic rule of Hangul character, extracted features filtered out and select candidates of character region. Next, candidates of Hangul character region are merged into one Hangul character using Hangul character merging algorithm. Finally, we detect the final character region by Hangul character class decision algorithm. Experimental result, proposed method could detect a character region effectively in images that contains a complex background and various environments. As a result of the performance evaluation, A proposed method showed advanced results about detection of Hangul character region from mobile image.

Effect of Partially Restrained Connections on Seismic Risk Evaluation of Steel Frames (강 뼈대 구조물의 지진위험도 평가에 대한 부분구속 접합부의 영향)

  • 허정원;조효남
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.537-549
    • /
    • 2001
  • The effect of partially restrained(PR) connections and the uncertainties in them on the reliability of steel frames subjected to seismic loading is addressed. A stochastic finite element method(SFEM) is proposed combining the concepts of the response surface method(RSM), the finite element method(FEM), the first-order reliability method (FORM), and the iterative linear interpolation scheme. The behavior of PR connections is captured using moment-relative rotation curves, and is represented by the four-parameter Richard model. For seismic excitation, the loading, unloading, and reloading behavior at PR connections is modeled using moment-relative rotation curves and the Masing rule. The seismic loading is applied in the time domain for realistic representation. The reliability of steel frames in the presence of PR connections is calculated considering all major sources of nonlinearity. The algorithm is clarified with the help of an example.

  • PDF

Vibration Reduction Evaluation of Jacket Structure by applying Precast Concrete Block and Suction pile (Precast Concrete Block 및 Suction pile을 적용한 Jacket 구조물의 진동저감 효과 평가)

  • Lee, Sung-Jin;Kyung, Kab-Soo;Ryu, Seong-Jin;Jeong, Ji-Young;Park, Jin-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.375-384
    • /
    • 2015
  • Recently, construction sites of offshore wind power tend to move from shallow water to deep water. From this tendency, the research on the support structure of offshore wind power in deep water will be a key issue. In this study, precast concrete block and suction pile are applied to existing jacket structure. In order to reduce the vibration of this structure, the tuned liquid damper is also applied in the precast concrete block. The applicability of the suggested jacket structure is evaluated by finite element analysis. And the vibration tends to decrease about 5%, when the tuned liquid damper is applied.

A Protection Capacity Evaluation of Vessel Protective Structures by Quasi-Static Collision Analysis (준정적 충돌해석을 통한 선박충돌방공호의 방호능력평가)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, the vessel collision protective structure and the vessel were modeled numerically and the quasi-static collision analysis was performed to evaluate the maximum protection capacity. In the modeling process of protective structure, the nonlinear behaviors of structure and the supporting conditions of ground including pull-out action were considered. In that of collision vessel, the bow of vessel was modeled precisely, because of the nonlinear behaviors were concentrated on it. For the efficient analysis, the mass scaling scheme was applied, also. To evaluate the differences and efficiency, the dynamic analyses were performed for the same model, additionally. Based on the obtained energy dissipation curves of the structure and the vessel, the moment that the collision force affected to the bridge substructures was determined and the maximum allowable collision velocity was evaluated. Because of the energy dissipation bound can be recognized clearly, this scheme can be used efficient in engineering work.

An Evaluation of Blast Resistance Performance of RC Columns According to the Shape of Cross Section (단면의 형상에 따른 철근콘크리트 기둥의 폭발저항 성능 평가)

  • Kim, Han-Soo;Park, Jae-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.387-394
    • /
    • 2010
  • The alternative load path method based on a column removal scenario has been commonly used to protect building structures from being progressively collapsed due to probable blast loading. However, this method yields highly conservative result when the columns still have substantial load resisting capacity after blast. In this study, the behavior of RC columns with rectangular and circular sections under the blast loading was investigated and the remaining capacity of the partially damaged columns was compared. AUTODYN which is a hydrocode for the analysis of the structure on the impact and blast loading was used for this study. The blast loading was verified with the experiment results. The analysis results showed that the circular columns are preferable to the rectangular ones in respect of the blast resistance performance.

Improving the Reliability of the National Database for Chemical Hazard Information (국가 화학물질 유해성정보 데이터베이스 구축 과정의 신뢰도 제고 방안에 관한 연구)

  • Lee, Somin;Lee, Minhyeok;Kang, Mijin;Kwon, Soon-Kwang;Ra, Jin-Sung;Park, Beaksoo
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.4
    • /
    • pp.410-422
    • /
    • 2020
  • Objectives: According to the Act on Registration, Evaluation, Etc. of Chemicals, new and existing chemicals must be registered by 2030. In addition, industries need to submit hazard data as an attachment during the registration process. Therefore, we constructed a nationwide chemical database to support small industry by providing hazard data and original sources. During the process, we developed a new standard procedure for minimizing errors and increasing reliability. Methods: We analyzed the categories of errors and the cause of the errors through the verification results of the 2019 project. We present an improved database construction methodology and system. Results: Errors are categorized according to their causative factors into simple, technical, and structural type errors. Simple errors arise simply because of decreased concentration or negligence in following the instructions. Technical errors are caused by a discrepancy between the professional field and the type of data. Structural errors indicate systemic errors such as incomplete forms on the excel database or ambiguity in the guidelines. Lessons from the errors collected in the 2019 project are used to update the procedures for database authorization and technical guidelines. The main update points are as follows; 'supplementation of review process', 'giving regular training to external reviewers', 'giving additional information to authors, like physico-chemical properties of substances, degradability, etc.', 'amendment of excel form', and 'guideline upgrades'. Conclusions: We conducted this study with the aim of improving the accuracy and reliability of the database of hazard information for chemical substances. The new procedures and guidelines are now being used in the 2020 project for construction of a hazard information database for Korea.

Evaluation of Stress Characteristics and Rupture Risk of the Aortic Wall According to Abdominal Aortic Aneurysm Geometry and Age (복부대동맥류 형상 및 연령에 따른 동맥 벽 응력 특성 및 파열 위험성 평가)

  • Lee, Chung Won;You, Ji-Hun;Huh, Up;Lee, Chi-Seung;Ryu, Dong-Man
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.179-186
    • /
    • 2020
  • In this study, the wall stress and rupture risk for abdominal aortic aneurysms were calculated based on the age and geometry of the examined abdominal aortic aneurysms. The geometry of the abdominal aorta was simulated using computed tomography data from patients with abdominal aortic aneurysms. With regard to material properties, the Gasser-Ogden-Holzapfel model was applied to the analysis to simulate the anisotropic hyperelastic characteristics of the artery. In addition, each material parameter was estimated to consider the properties for age and for normal and aneurysm tissue. Moreover, the correlation between the diameter and angle of the aortic aneurysms was analyzed based on data from patients with abdominal aortic aneurysms, and series simulations were conducted. As a result, the rupture risk for the abdominal aortic aneurysms was evaluated based on the age and geometry of the aneurysm.

Spinal Stability Evaluation According to the Change in the Spinal Fixation Segment Based on Finite Element Analysis (유한요소해석 기반 척추 고정분절 변화에 따른 척추 안정성 평가)

  • Kim, Cheol-Jeong;Son, Seung Min;Heo, Jin-Young;Lee, Chi-Seung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.145-152
    • /
    • 2020
  • In this study, we evaluated spinal stability based on the change in the thoracolumbar fixation segment using finite element analysis (FEA). To accomplish this, a finite element (FE) model of a normal thoracolumbar spine (T10-L4), including intervertebral discs (IVD), ligaments, and facet joints, was constructed, and the material properties reported in previous studies were implemented. However, L1 was assumed as the lesion site, and three types of posterior fixation, namely, L1-L2, T12-L2, and T12-L1-L2, were implemented in the thoracolumbar FE model. In addition, the loading conditions for flexion, extension, lateral bending, and axial rotation were adopted. Through the series FEA, the deformation, equivalent stress, range of motion, and moment on the pedicle screws, vertebrae, and IVD were calculated, and the spinal stability was evaluated based on the FEA results.

Evaluation of Seismic Performance of Beam-Column Connections Using Minimally Spaced Headed Reinforcements (근접 배치된 확대머리 철근의 보-기둥 접합부 내진 성능 평가)

  • Cho, Ah Sir;Shin, Hyeong-Yeop;Jeong, Seung Yong;Kang, Thomas H.K.;Kim, Woosuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • To resolve the conservative requirements for clear headed-bar spacing in KBC 2016 and ACI 318-08, two 2/3-scale exterior beam-column connections were tested under cyclic seismic loading. The seismic tests primarily explored the effect on their seismic performance of using (a) small clear spacings and (b) multiple layers of headed reinforcements in the beam. Also, the previous test data were thoroughly analyzed. It was concluded that the clear bar spacing of 2db or the use of two bar layers might be permitted for headed reinforcements embedded in exterior beam-column connections.