• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.033 seconds

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

Experimental evaluation of electrical conductivity of carbon fiber reinforced fly-ash based geopolymer

  • Vaidya, Saiprasad;Allouche, Erez N.
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.27-40
    • /
    • 2011
  • Geopolymer concrete is finding a growing number of niche applications in the field of civil engineering due to its high compressive strength and strength gain rate, retainage of structural properties in elevated temperature environments, chemical stability in highly acidic conditions and environmental benefits. Combining the above mentioned characteristics with induced electrical conductivity, could enable geopolymer cement to serve as a smart and sustainable cementitious material suitable for health monitoring of civil structures. Carbon fibers were added to fresh geopolymer and OPC (ordinary Portland cement) mixes to enhance their electrical conductivities. AC-impedance spectroscopy analysis was performed on the specimens with fiber fraction ranging from 0.008 to 0.8 with respect to the weight of cementitious binder, to measure their electrical resistivity values and to determine the maximum beneficial fiber content required to attain electrical percolation. Experimental observations suggest that CFR-geopolymer cement exhibits superior performance to CFR-OPC in terms of conducting electrical current.

An Evaluation on Evacuation Safety in Training Facilities For Young People based on Fire and Evacuation Simulation (화재.피난 시뮬레이션을 통한 청소년 수련관 시설의 피난 안정성 검토)

  • Chol, Chang-Ho;Cho, Mm-Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.23-32
    • /
    • 2009
  • The Purpose for this study was to analyze the evacuation behavior of a training facilities for young people in case of fire emergency. It is necessary to study for fire safety design of the training facilities. The study carried out two different simulations on the training facilities. The results were divided into two groups by using Simulex, FDS. By comparing those two different outputs, we were able to verify the problems of existing training facilities. The results have shown that there was a need for a greater structural design in these training facilities.

A Safety Evaluation on the Rubber Panel for Railway Crossing (철길건널목용 고무보판 안전성 평가)

  • 윤성철;정종덕
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.125-132
    • /
    • 2002
  • As the public use part of the railway and the road, the railway crossing is important to work properly by two transportation means. Also, It is important to provide the good face of friction on the railway crossing in aspect of protecting the railway crossing accident. Lately, the material of railway crossing panel is the wood, the asphalt, and the steel. As they have a various fault, it was studied to analyze the structural action of the new material, rubber panel. This paper analyzed eigenvalue, stress and displacement by truck passing weight, thermal stress and train moving weight, using the Finite Element Method model

Evaluation of Composite Ground Improvement at Structural Foundation Ground by Super Injection Grouing (SIG공법에 의한 구조물기초지반에서의 복합지반개량 평가)

  • 김종국;손형호;이호관;성기광
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.347-354
    • /
    • 2002
  • In this paper, when structures are constructed in the soft ground with poor bearing capacity at Incheon International Airport(railroad area), as for the grouting columns built In soft ground by high pressure jet grouting with Triple tube rod(super injection grouting), the effects on reinforcement and bearing capacity of ground are investigated. A unconfined compressive strength tests has been performed on the specimens sampled from the grouting columns and a mass plate bearing test has been performed on a grouting column. The test results show that super injection grouting has a sufficient effect on composite ground improved of foundation ground and reatraint of settlement of structure.

  • PDF

SEISMIC STABILITY OF SATURATED REINFORCED SOIL WALLS

  • Kuwano, Jiro;Izawa, Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.66-71
    • /
    • 2010
  • This paper studies the effect of saturation of backfill on the seismic stability of reinforced soil walls (RSWs) using centrifuge shaking table tests. For comparison, degradation of static stability and seismic stability of a RSW under unsaturated condition was also investigated. Test results showed that the RSW under saturated condition had enough static stability. However, seismic stability of saturated RSW significantly decreased as compared with that under unsaturated condition. The saturated model RSW did not collapse, though it showed large deformation. It maintained sufficient stability after shakings although a clear slip surface appeared in the backfill. Finally, it is discussed how to evaluate residual stability of RSWs damaged by earthquakes with test results and the simple evaluation method proposed by authors.

  • PDF

Mechanical Properties of Carbon-Fiber Reinforced Polymer-Impregnated Cement Composites

  • Park, Seung-Bum;Yoon, Eui-Sik
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.65-77
    • /
    • 1999
  • A portland cement was reinforced by incorporating carbon fiber(CF), silica powder, and impregnating the pores with styrene monomers which were polymerized in situ. The effects of type, length, and volume loading of CF, mixing conditions, curing time and, curing conditions on mechanical behavior as well as freeze-thaw resistance and longer term stability of the carbon-fiber reinforced cement composites (CFRC) were investigated. The composite Paste exhibited a decrease in flow values linearly as the CF volume loadings increased. Tensile, compressive, and flexural strengths all generally increased as the CF loadings in the composite increased. Compressive strength decreased at CF loadings above approx. 3% in CFRC having no impregnated polymers due to the increase in porosity caused by the fibers. However, the polymer impregnation of CFRC improved all the strength values as compared with CFRC having no Polymer impregnation. Tensile stress-strain curves showed that polymer impregnation decreased the fracture energy of CFRC. Polymer impregnation clearly showed improvements in freeze-thaw resistance and drying shrinkage when compared with CFRC having no impregnated polymers.

  • PDF

Structural Performance of Seismic Resistance Capacity of Carbon Sheet-Angle Retrofitting Method in Wall-Slab Joint (탄소섬유와 L형강을 이용한 벽-슬래브 접합부의 보강성능)

  • Roh Gong-Ki;Park Tae-Won;Park Hyun-Soo;Chung Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.65-68
    • /
    • 2004
  • In the seismical capacity evaluation for RC structure wall-slab joint is very important factor. Because lateral load is resistance element and gravity load resistance element are acted mutually in the wall-slab joint. In this paper, to improve the seismic capacity of the wall-slab joint in the existing wall type apartments experiment which improve and retrofit a seismic capacity by unequal angle bracing and carbon sheet attachment are carried out. These methods are also economic and simple in mitigating seismic hazard, improve earthquake-resistance performance, and reduce risk level of building occupants. From the experimental results, the change of strength, degration of stiffness, and energy dissipation are evaluated. It can be concluded that these methods are effective in improving the seismic performance.

  • PDF

Static Tests on SRC Columns (SRC 기둥에 대한 정적실험)

  • Jung In Keun;Min Jin;Shim Chang Su;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.97-100
    • /
    • 2004
  • Steel encased composite columns are widely used due to their excellent structural performance in terms of stiffness, strength, and ductility. However, experimental studies were usually for the columns having higher steel ratio $(3-4\%)$. There are two different design concepts for SRC columns. ACI-318 specifies the design strength of the column using the same concept of reinforced concrete columns. AISC-LRFD specifies the P-M diagram using the concept of steel column. In this paper, SRC columns have the steel ratio of $0.53\%\;and\;1.06\%$. From the test results, ACI-318 specifications showed better evaluation of SRC columns having low steel ratio. H beam and steel tube partially filled with concrete were embedded in concrete. Flexural tests showed considerably high ductility.

  • PDF

The Behavior of Reinforced Concrete Coupling Slab in Wall-Dominant System (벽식 아파트 구조에서 연결슬래브의 거동특성)

  • Choi, Youn-Cheul;Choi, Hyun-Ki;Choi, Chang-Sik;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.61-64
    • /
    • 2006
  • A common form of construction for apartment buildings consists of walls and coupling element. But, the structural behavior of coupling element are very complex and affected by the properties of coupling element. The propose of this paper is to evaluation the behavior of coupling element in wall-dominant system. An 1/2 scale three specimens was constructed and under cyclic loads. The specimen was consisted of opening walls and coupling element as well as floor slabs. From the result of this study, in coupling slabs, the stresses were not uniform across the width. And the effective width of coupling slabs was found smaller than the that of predicted from previous studies.

  • PDF