• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.032 seconds

Evaluation on Stiffness of Mechanical Sleeve Bar Splice Filling High-strength Mortar Under Monotonic Loading (고강도 모르타르를 충전한 기계적 슬리브 철근이음에 대한 단조가력 하에서의 강성 평가)

  • Kim, Hyong Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.79-88
    • /
    • 2012
  • The purpose of this study is to evaluate the stiffness of the mechanical sleeve reinforcement splices filling high-strength mortar under monotonic loading. For this objective, we analyzed and compared the previous test data of 189 actual-sized mortar-filled sleeve bar splices specimens, including the reinforcing bar splices prepared and tested by the author. The paper results indicated that the minimum values of compressive strength of mortar($f_g$) multiplied by the ratio of reinforcement development length to bar diameter(L/d) were suggested for holding the stiffness of the mortar-filled sleeve reinforcement splices required in AIJ code.

Corrosion Inhibition Properties of Steel bars in Reinforced Concrete Using Superplasticizer with Air Entrained Agent (고성능AE감수제를 사용한 콘크리트의 철근부식 저항성)

  • Lee, Mun-Hwan;Jung, Mi-Kyung;Oh, Se-Chul;Bae, Kyu-Woong;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.149-160
    • /
    • 2000
  • As systematic methodologies are required for the evaluation on the durability of reinforced concrete structure, it is necessary to study and examine every factor which deteriorates the durability of structures. This paper aims to define factors affecting rebar corrosion and to establish a basis for a prediction of serviceability, regarding a state of harmful corrosion as a state when crack begins on the surface of concrete. The study results are followings; The corrosive current has changed by types of mixture, and this property enables the evaluations of corrosion resistance by mixture and concrete cover. The specimen using AE superplasticizer has better corrosion-resistance properties than non-AE specimen, as well those having low W/C and high unit cement weight. The procedure for calculation of durable year in this study is able to use as an indicator to establish mixture factors such as unit cement weight, W/C, amount of admixture, etc.

  • PDF

Assessment Model for the Safety and Serviceability of Structures using Terrestrial LiDAR (지상라이다를 이용한 구조물의 안전 및 사용성 평가 모델)

  • Lee, Hong-Min;Park, Hyo-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.17-28
    • /
    • 2006
  • Structural health monitoring is important to maintain the safety and serviceability of the structures. The displacement in the structure should be precisely and frequently monitored because it is a direct assessment index indicating its stiffness. However, no practical method has been developed to monitor such displacement precisely, particularly for high-rise buildings and long span bridges because they cannot be easily accessible. To overcome such difficult accessibility, we propose to use a LIDAR system that remotely samples the surface of an object using laser pulses and generates the coordinates of numerous points on the surface. In this study, using terrestrial LiDAR, we develop a novel displacement measuring model for structural health monitoring and perform an indoor experiment to prove its performance.

Structural Performance Evaluation of Hollow Reinforced Concrete Half Slabs (철근콘크리트 중공 하프슬래브의 구조성능평가)

  • Hwang, Hyun-Bok;Kim, Sang-Woo;Hwang, Hyun-Sik;Lee, Ki-Jang;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.45-48
    • /
    • 2008
  • This study is for proposing the shape of hollow and evaluating the structural performance of hollow reinforced concrete (RC) half slabs. The two-phase experimental works were carried out, and styrofoam was used for reduction of dead load and vibration. From the Phase I test result, the shape and spacing of the hollow were determined to obtain the high deduction ratio of the concrete and the desirable failure mode of the hollow RC half slabs. In the Phase II test, two slab specimens were tested in flexure to evaluate the flexural capacity of the hollow RC half slabs with the proposed hollow shape. In the result of the test, all the specimens having the proposed hollow shape showed sufficient flexural capacity.

  • PDF

Structural Behavior Characteristics and Efficiency Evaluation of Outrigger System using Stiffness-Based Optimal Design Technique (강성최적설계법을 이용한 아웃리거 시스템의 거동특성 및 효율성 평가)

  • Kim, Ho-Soo;Lee, Han-Joo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.123-130
    • /
    • 2005
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift and evaluate the structural behavior characteristics and efficiency for tall outrigger system subject to lateral loads. To this end, displacement sensitivity depending on behavior characteristics of outrigger system is established and approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Specifically, under the 'constant-shape' assumption, resizing technique of member is developed. Four types of 50 story frameworks are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF

An Evaluation of Fire Resistance and Mock-up Test of the Alumino-silicate Fire Resistant Board (알루미노 실리케이트계 내화보드의 내화성능 및 현장적용성 평가)

  • Kim, Doo-Ho;Park, Dong-Cheol;Kim, Woo-Jae;Lee, Sea-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05b
    • /
    • pp.43-47
    • /
    • 2010
  • The use of high-strength concrete has increased for its excellent structural stability as buildings become higher and bigger than ever before in Korea and overseas recently. The functional requirement of building materials has also been bolstered so for the high -performance, high-quality construction materials to be used more extensively. However, the internal structure of the high-strength concrete is very dense so spalling can be caused during fire. The spalling in turn can cause critical structural damages followed by the fatal consequences, demolition of the building. Therefore, ensuring fire safety for high-rise buildings is assumed to be urgent. Alumino-silicate fire resistant board producing technology has been developed in situations that new materials with excellent fire resistance and easy installation has been sought. The alumino-silicate fire resistant board turned out to exhibit not only fire resistance and excellent physical and dynamical characteristics but also excellent onsite applicability and easy process and transportation after completing Mock-up test. Its excellence as a high-performance building materials was proven.

  • PDF

Evaluation of Suitable Application of ultra high-strength Concrete to V.H Separated Placement (VH분리타설 공법의 초고강도 콘크리트 적용성 평가)

  • Kim, Hak-Young;Ki, Jun-Do;Park, Hyun;Lim, Byung Chun;Lee, Young Do;Jung, Sang Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.23-26
    • /
    • 2009
  • Despite vigorous studies on ultra high-strength concrete in Korea, it still faces many challenges in application to on-site construction methods. This study intends to evaluate the applicability of the VH separated-pouring method which is currently used and was designed to pour ultra high-strength concrete with a design strength of 60, 100N/㎟ separately to girder and beam. When it comes to VH separated-pouring, there is a difference in the required design strength between a girder and a beam, which tends to be larger for ultra high-strength concrete. The tensile strength and cold joint at the joint end have not been commonly evaluated and thus the inevitably of its use is dependent on a structural analysis of the structural stress of reinforcement. In the study, potential problems with respect to the building material which might occur during the pouring of ultra high-strength concrete was evaluated and issues on joint surface performance, the hydration energy contained in the members, and the effects of contraction in concrete were considered as the key elements for study.

  • PDF

Power Spectrum Estimation on the Signals with Low Frequency (저주파진동 해석을 위한 데이터처리기법 연구)

  • 천영수;조남규;이리형
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.185-193
    • /
    • 1997
  • A major problem of frequency analysis in the field of low-frequencies such as building or construction vibration is the way of signal processing which is appropriate to obtain included frequency content from the finite process to be measured. Therefore, it is the aim of the investigation reported herein to develop the signal processing algorithm which is analyzed without losing the reliability of the measurements in low-frequency domain. To accomplish the research objective, it was analyzed the problems on the way of signal processing in low-frequency domain, and compared the response characteristics of FFT with those of MEM (Maximum Entropy Method) about the low-frequency of vibration. This evaluation of the response characteristics is used in determining appropriate signal processing algorithm into the low-frequency domain.

  • PDF

Seismic Performance Evaluation of Flat Plate Structures Retrofitted with Steel Plates and Braces (강판과 가새로 보강된 무량판 구조물의 내진 성능평가)

  • Shin, Woo-Seung;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.451-458
    • /
    • 2008
  • In this study 3- and 6-story flat plate structures designed only for gravity load are retrofitted with steel plates and braces and their seismic performances are evaluated to verify the effect of seismic retrofit. According to the analysis results obtained from nonlinear static and dynamic analyses both the strength and stiffness are significantly enhanced as a result of the seismic retrofit. Especially the effect of column jacketing could be enhanced significantly when slabs were reinforced to prevent premature punching shear failure. When buckling-restrained braces are used instead of conventional braces, the structures showed more ductile behavior, especially in the 3-story structure.

Thermo-Structural Survivability Evaluation of a Thrust-Measuring Nozzle Extension in a Full-scale Combustor (실물형 연소기의 추력측정용 노즐확장부에 대한 열/구조적 건전성 평가)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.17-23
    • /
    • 2009
  • The survivability of the temporary nozzle extension for an accurate thrust measurement in a full-scaled combustor has been investigated through thermal analyses. The effects of nozzle extension materials and the thickness of thermal barrier coating (TBC) have been elucidated. It has been found that thermal survivability cannot be guaranteed without TBC. The maximum temperature of the nozzle extension decreased with increasing TBC thickness. For hot firing tests, the TBC is thought to be indispensable to the thermo-structural survivability of the nozzle extension made of steel.