• 제목/요약/키워드: structural evaluation

Search Result 4,836, Processing Time 0.029 seconds

Correlation between seismic damage index and structural performance for Indian code-conforming RC frame buildings

  • Tushar K. Das;Pallab Das;Satyabrata Choudhury
    • Earthquakes and Structures
    • /
    • v.27 no.3
    • /
    • pp.209-226
    • /
    • 2024
  • The susceptibility of Reinforced Concrete (RC) buildings to earthquake-induced damage is a critical concern, primarily attributed to their inadequate seismic performance. The existing earthquake-resistant design code of India prescribes guidelines to minimize seismic damage but does not provide any means for evaluating the actual seismic performance and damage. To ascertain the seismic performance of the structures quantitatively, it is crucial to classify damage into measurable damage states. Damage Index (DI) acts as an important tool for this purpose. Among various procedures for computation of DI, the modified Park and Ang Damage Index appears to be highly accurate. However, the major drawback of this method is that it is lengthy and time-consuming. On the other hand, structural performances can be evaluated using various performance parameters such as interstory drift ratio (IDR), inelastic deformation, etc., as described in FEMA-356 and ASCE-41 17. The present study explores the correlation between seismic DI and structural performance in RC frame buildings designed according to IS code. Sixteen building models, incorporating diverse configurations, are examined using nonlinear static and time history analyses. A simplified equation is developed by regression analysis to predict DI based on IDR, offering a computationally efficient alternative. Validation tests are done to confirm the equation's accuracy. Furthermore, a unified damage scale integrating DI and seismic performance is also proposed for seismic damage evaluation of buildings designed by IS code.

A Study on Allowable Loading Height of Debris during Building Demolition (건축물 전면해체시 해체잔재물의 허용적재높이에 관한 연구)

  • Tae-Ho Yoon;Bo-Sik Son
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.5
    • /
    • pp.1041-1049
    • /
    • 2024
  • In recent years, the redevelopment and reconstruction of buildings has been actively trending as part of urban development projects, and the number of buildings being demolished is also rapidly increasing. However, various valid institutional and technical standards are required to ensure safety related to demolition and dismantling and to reasonably manage field work, but there is a lack of research and data on them. Accordingly, this study seeks to re-establish realistic working conditions applicable to complete dismantling construction through research on various variables in examining the structural safety of total dismantling construction. In particular, the purpose is to secure work safety at the demolition site by dismantling rahmen-type reinforced concrete buildings in urban areas by inserting equipment into the upper floor slab and evaluating structural safety according to the loading height of demolition debris. This study can be used to ensure the safety of field workers and as a useful guide for engineers to plan and carry out demolition work.

Evaluation of influence of dissolved oxygen on corrosion behaviors of FeCrW model alloys in 360 ℃ water

  • Jun Yeong Jo;Chi Bum Bahn;Hwasung Yeom
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4404-4411
    • /
    • 2024
  • The dissolved oxygen in a coolant can affect the oxidation properties of structural materials. A desirable oxide phase formation is achieved by manipulating the oxygen level in the coolant, which can mitigate structural material degradation in nuclear power plants. Therefore, the role of dissolved oxygen in the corrosion of structural materials in aqueous environments needs to be understood. In this study, a short-term corrosion test (up to 300 h) of Ferritic/Martensitic steels (F/M steels; FeCrW model alloys), namely, Fe12Cr1W, Fe9Cr1W, and Fe9Cr, in stagnant water at 360 ℃ was performed in a pressurized autoclave with the dissolved oxygen concentration controlled to 1 ppm or a very low level (<1 ppm). The results of the corrosion tests showed that an increase in the oxygen level in the water elevated the corrosion potential, allowing the phase transition of iron oxide from magnetite (Fe3O4) to hematite (Fe2O3), whereas there was no significant correlation between the concentrations of the alloying elements Cr and W and the oxide growth rate. In addition, hematite was found to mitigate further oxide growth. Finally, a mechanism for the growth of the initial oxide layer was proposed based on the experimental results.

An approach for calculating the failure loads of unprotected concrete filled steel columns exposed to fire

  • Wang, Y.C.;Kodur, V.K.R.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.127-145
    • /
    • 1999
  • This paper deals with the development of an approach for evaluating the squash load and rigidity of unprotected concrete filled steel columns at elevated temperatures. The current approach of evaluating these properties is reviewed. It is shown that with a non-uniform temperature distribution, over the composite cross-section, the calculations for the squash load and rigidity are tedious in the current method. A simplified approach is proposed to evaluate the temperature distribution, squash load, and rigidity of composite columns. This approach is based on the model in Eurocode 4 and can conveniently be used to calculate the resistance to axial compression of a concrete filled steel column for any fire resistance time. The accuracy of the proposed approach is assessed by comparing the predicted strengths against the results of fire tests on concrete filled circular and square steel columns. The applicability of the proposed approach to a design situation is illustrated through a numerical example.

Impact study for multi-girder bridge based on correlated road roughness

  • Liu, Chunhua;Wang, Ton-Lo;Huang, Dongzhou
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.259-272
    • /
    • 2001
  • The impact behavior of a multigirder concrete bridge under single and multiple moving vehicles is studied based on correlated road surface characteristics. The bridge structure is modeled as grillage beam system. A 3D nonlinear vehicle model with eleven degrees of freedom is utilized according to the HS20-44 truck design loading in the American Association of State Highway and Transportation Officials (AASHTO) specifications. A triangle correlation model is introduced to generate four classes of longitudinal road surface roughness as multi-correlated random processes along deck transverse direction. On the basis of a correlation length of approximately half the bridge width, the upper limits of impact factors obtained under confidence level of 95 percent and side-by-side three-truck loading provide probability-based evidence for the evaluation of AASHTO specifications. The analytical results indicate that a better transverse correlation among road surface roughness generally leads to slightly higher impact factors. Suggestions are made for the routine maintenance of this type of highway bridges.

Study on seismic behavior and seismic design methods in transverse direction of shield tunnels

  • He, Chuan;Koizumi, Atsushi
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.651-662
    • /
    • 2001
  • In order to investigate the seismic behavior and seismic design methods in the transverse direction of a shield tunnel, a series of model shaking table tests and a two-dimensional finite element dynamic analysis on the tests are carried out. Two kinds of static analytical methods based on ground-tunnel composite finite element model and beam-spring element model are proposed, and the validity of the static analyses is verified by model shaking table tests. The investigation concerns the dynamic response behavior of a tunnel and the ground, the interaction between the tunnel and ground, and an evaluation of different seismic design methods. Results of the investigation indicate that the shield tunnel follows the surrounding ground in displacement and dynamic characteristics in the transverse direction; also, the static analytical methods proposed by the authors can be used directly as the seismic design methods in the transverse direction of a shield tunnel.

Study on structural damping of aluminium using multi-layered and jointed construction

  • Nanda, B.K.;Behera, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.631-653
    • /
    • 2005
  • In this work, the mechanism of damping and its theoretical evaluation for layered aluminium cantilever structures jointed with a number of equispaced connecting bolts under an equal tightening torque have been considered. Extensive experiments have been conducted on a number of specimens for comparison with numerical results. Intensity of interface pressure, its distribution pattern, dynamic slip ratio and kinematic coefficient of friction at the interfaces, relative spacing of the connecting bolts, frequency and amplitude of excitation are found to play a major role on the damping capacity of such structures. It is established that the damping capacity of structures jointed with connecting bolts can be improved largely with an increase in number of layers maintaining uniform intensity of pressure distribution at the interfaces. Thus the above principle can be utilized in practice for construction of aircraft and aerospace structures effectively in order to improve their damping capacity which is one of the prime considerations for their design.

Reliability considerations in bridge pier scouring

  • Muzzammil, M.;Siddiqui, N.A.;Siddiqui, A.F.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • The conventional design of bridge piers against scour uses scour equations which involve number of uncertain flow, sediments and structural parameters. The inherent high uncertainties in these parameters suggest that the reliability of piers must be assessed to ensure desirable safety of bridges against scour. In the present study, a procedure for the reliability assessment of bridge piers, installed in main and flood channels, against scour has been presented. To study the influence of various random variables on piers' reliability sensitivity analysis has been carried out. To incorporate the reliability in the evaluation of safety factor, a simplified relationship between safety factor and reliability index has been proposed. Effects of clear water (flood channel) and live bed scour (main channel) are highlighted on pier reliability. In addition to these, an attempt has also been made to explain the failure of Black mount bridge of New Zealand based on its pier's reliability analysis. Some parametric studies have also been included to obtain the results of practical interest.

Experimental Evaluation of FREE NODE with Axial Load and Moment for Single Layer Free-Form Structures (축력과 모멘트를 동시에 받는 FREE NODE의 실험적 평가)

  • Oh, Jin-Tak;Chung, Kwang-Ryang;Kim, Do-Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.51-59
    • /
    • 2014
  • Single layer free-form structures are being highlighted in the field of architecture due to its attractive shape. In these structures, node connecting system is very important because the node must resist bending and axial stress simultaneously. So the local and global stabilities of entire structure can be determined by the stiffness of node system. In this study, therefore, various types of bending test with axial force were performed. As a result, bending capacity with axial force of a new spherical node for free-form structure could be performed and structural capacities were checked to use in real structure.

Noise Lowering for a Large Variable Speed Range Use Permanent Magnet Motor by Frequence Shift and Structural Response Evaluation of Electromagnetic Forces

  • Arata, Masanori;Takahashi, Norio;Fujita, Masafumi;Mochizuki, Motoyasu;Araki, Takashi;Hanai, Takashi
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.67-74
    • /
    • 2012
  • According to electrical output up rating of a permanent magnet motor and request to operate for a large variable speed range, resonance between structural natural vibration and electromagnetic force inside the motor can take place and make noise. This paper describes the mechanism of a resonance between them and noise lowering procedure by frequency shift when they are applied to the reluctance torque largely employed new motor named Permanent magnet Reluctance Motor (PRM).