• Title/Summary/Keyword: structural dynamic analysis

Search Result 3,087, Processing Time 0.025 seconds

A study on structural integrity and dynamic characteristic of inertial load test equipment for performance test of railway vehicle propulsion control system (철도차량 추진제어장치 성능시험을 위한 관성부하 시험설비의 구조안전성 및 동특성 평가 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Lee, Sang-Hoon;Lee, Dae-Bong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1389-1394
    • /
    • 2010
  • This paper describes the evaluation of structural integrity and dynamic characteristic of inertial load test equipments for performance test of railway vehicle propulsion control system. The propulsion control system of railway vehicle has to be confirmed of safety and reliability prior to it's application. Therefore, inertial load test equipments were designed through theoretical equation for performance test of propulsion control system. The structural analysis of inertial load test equipments was conducted using Ansys v11.0 and it's dynamic characteristic was evaluated the designed using Adams. The results showed that the structural integrity of inertial load test equipment was satisfied with a safety factor of 10.2. Also, the structural stability was proved by maximum dynamic displacement of 0.82mm.

  • PDF

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.

Time-variant structural fuzzy reliability analysis under stochastic loads applied several times

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.525-534
    • /
    • 2015
  • A new structural dynamic fuzzy reliability analysis under stochastic loads which are applied several times is proposed in this paper. The fuzzy reliability prediction models based on time responses with and without strength degeneration are established using the stress-strength interference theory. The random loads are applied several times and fuzzy structural strength is analyzed. The efficiency of the proposed method is demonstrated numerically through an example. The results have shown that the proposed method is practicable, feasible and gives a reasonably accurate prediction. The analysis shows that the probabilistic reliability is a special case of fuzzy reliability and fuzzy reliability of structural strength without degeneration is also a special case of fuzzy reliability with structural strength degeneration.

A Structural Analysis of Underground Openings in Discontinuous Rock Masses (불연속면의 영향을 고려한 지하암반공동의 구조해석)

  • 김선훈;최규섭;김해홍;김진웅
    • Computational Structural Engineering
    • /
    • v.4 no.4
    • /
    • pp.117-124
    • /
    • 1991
  • In order to predict properly the effects of ground motion associated with earthquakes on underground radioactive waste disposal facilities, an understanding of the structural behavior of an underground opening in discontinuous rock masses subjected to dynamic loadings is essential. This paper includes literature review on computational models for discontinuous rock masses and on mathematical models for the structural analysis of underground opening. Then, structural analyses of underground openings using the distinct element computer program written for the static and dynamic analysis of discontinuous rock masses have been performed.

  • PDF

Simulation study on dynamic response of precast frames made of recycled aggregate concrete

  • Pham, ThiLoan;Xiao, Jianzhuang;Ding, Tao
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.643-667
    • /
    • 2015
  • 3-dimentional precast recycled aggregate concrete (RAC) finite element models were developed by means of the platform OpenSees to implement sophisticated nonlinear model subjected to seismic loads. Efforts were devoted to the dynamic responses (including dynamic characteristics, acceleration amplifications, displacements, story drifts) and capacity curve. In addition, this study extended the prediction on dynamic response of precast RAC model by parametric study of material properties that represent the replacement percentage of recycled coarse aggregate (RCA). Principles and assumptions that represent characteristics of precast structure and influence of the interface between head of column and cast-in-place (CIP) joint on the stiffness of the joints was put forward and validated by test results. The comparison between simulated and tested results of the precast RAC frame shows a good correlation with most of the relative errors about 25% in general. Therefore, the adopted assumptions and the platform OpenSees are a viable approach to simulate the dynamic response of precast frames made of RAC.

A Structural Analysis of the Tracked Vehicle (궤도차량의 차체구조해석)

  • Lee, Young-Shin;Choi, Chang;Jun, Byoung-Hee;Oh, Jae-Moon
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.145-155
    • /
    • 1997
  • In this study, static and dynamic transient analysis of tracked vehicle structure with recoil impact load is performed for transient impact and traveling load using ANSYS and ABAQUS FEM codes. When transient impact loads are applied at tracked vehicle, the maximum dynamic Von Mises stress occurs between beam stiffener of upper plate and race ring and stress level is about 390-450 MPa. The results of transient analysis shows similar level and tendency with static stress with dynamic force effect of 1.6. The excessive stresses occur around the race ring for the both cases. When the traveling loads are applied on the tracked vehicle, the maximum Tresca stress occurs around suspension #1 and is about 450 MPa and results of static and nonlinear transient analysis are quite similar.

  • PDF

Mathematical Proof for Structural Optimization with Equivalent Static Loads Transformed from Dynamic Loads (동하중에서 변환된 등가정하중에 의한 최적화 방법의 수학적 고찰)

  • Park, Gyung-Jin;Kang, Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.268-275
    • /
    • 2003
  • Generally, structural optimization is carried out based on external static loads. All forces have dynamic characteristics in the real world. Mathematical optimization with dynamic loads is extremely difficult in a large-scale problem due to the behaviors in the time domain. The dynamic loads are often transformed into static loads by dynamic factors, design codes, and etc. Therefore, the optimization results can give inaccurate solutions. Recently, a systematic transformation has been proposed as an engineering algorithm. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. Thus, many load cases are used as the multiple leading conditions which are not costly to include in modern structural optimization. In this research, it is mathematically proved that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition. At first, the solution of the new algorithm is mathematically obtained. Using the termination criteria, it is proved that the solution satisfies the Karush-Kuhn-Tucker necessary condition of the original dynamic response optimization problem. The application of the algorithm is discussed.

Dynamic Sensitivity Analysis For Lateral Drift Control Of Frame-Shear Wall Structures (골조-전단벽 구조물의 횡변위제어를 위한 동적 민감도 해석)

  • Lee, Han-Joo;Kim, Ji-Youn;Han, Seung-Baek;Nam, Kyung-Yun;Kim, Ho-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.571-576
    • /
    • 2007
  • This study presents stiffness-based optimal design to control quantitatively lateral drift of frame-shear wall structures subject to seismic loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also, the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. The 12 story frame-shear wall structural models is considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF

Analysis of structural dynamic reliability based on the probability density evolution method

  • Fang, Yongfeng;Chen, Jianjun;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.201-209
    • /
    • 2013
  • A new dynamic reliability analysis of structure under repeated random loads is proposed in this paper. The proposed method is developed based on the idea that the probability density of several times random loads can be derived from the probability density of single-time random load. The reliability prediction models of structure based on time responses under several times random loads with and without strength degradation are obtained by using the stress-strength interference theory and probability density evolution method. The resulting differential equations in the prediction models can be solved by using the forward finite difference method. Then, the probability density functions of strength redundancy of the structures can be obtained. Finally, the structural dynamic reliability can be calculated using integral method. The efficiency of the proposed method is demonstrated numerically through a speed reducer. The results have shown that the proposed method is practicable, feasible and gives reasonably accurate prediction.

The Application of Structural Dynamic Optimization for the Actual Machine U sing Sensitive Analysis Techniques (감도해석기법을 이용한 구조물의 진동특성 최적화 수법의 실제 기계에의 응용)

  • ;長松 昭男
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.51-57
    • /
    • 1992
  • Authors had analyzed the Press machine's vibrational characteristics by Substructure Synthesis Method. This paper discribes the structural Dynamic Optimization for the machine using Sensitive Analysis Method. The substructure synthesis method and sensitive analysis methods are used for the vibration analysis and structural modification. The results obtained are as follows ; 1. The tooling precision of the press machine is ruled by the bending vibration of the slide. 2. The structural Modification Method for minimizing impact responses is proposed, and modal analysis and sensitive analysis method are introduced to solve it. 3. The impact responses of running machine were reduced to 40% of the unmodified machine by using the proposed method.

  • PDF