• 제목/요약/키워드: structural ductility improvement

검색결과 72건 처리시간 0.022초

Experimental shear strengthening of GFRC beams without stirrups using innovative techniques

  • Hany, Marwa;Makhlouf, Mohamed H.;Ismail, Gamal;Debaiky, Ahmed S.
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.415-433
    • /
    • 2022
  • Eighteen (18) (120×300×2200 mm) beams were prepared and tested to evaluate the shear strength of Glass Fiber Reinforced Concrete (GFRC) beams with no shear reinforcement, and evaluate the effectiveness of various innovative strengthening systems to increase the shear capacity of the GFRC beams. The test variables are the amount of discrete glass fiber (0.0, 0.6, and 1.2% by volume of concrete) and the type of longitudinal reinforcement bars (steel or GFRP), the strengthening systems (externally bonded (EB) sheet, side near-surface mounted (SNSM) bars, or the two together), strengthening material (GFRP or steel) links, different configurations of NSM GFRP bars (side bonded links, full wrapped stirrups, side C-shaped stirrups, and side bent bars), link spacing, link inclination angle, and the number of bent bars. The experimental results showed that adding the discrete glass fiber to the concrete by 0.6%, and 1.2% enhanced the shear strength by 18.5% and 28%, respectively in addition to enhancing the ductility. The results testified the efficiency of different strengthening systems, where it is enhanced the shear capacity by a ratio of 28.4% to 120%, and that is a significant improvement. Providing SNSM bent bars with strips as a new strengthening technique exhibited better shear performance in terms of crack propagation, and improved shear capacity and ductility compared to other strengthening techniques. Based on the experimental shear behavior, an analytical study, which allows the estimation of the shear capacity of the strengthened beams, was proposed, the results of the experimental and analytical study were comparable by a ratio of 0.91 to 1.15.

고인성 외곽 거푸집의 역학성능 및 이를 활용한 고강도 RC기둥의 내화성능에 관한 실험적 연구 (An Experimental Study on the Mechanical Properties of Ductile Outline Form and Fire Resistance of High Strength RC Column)

  • 노형남;김재환;김용로;김욱종;권영진;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.199-203
    • /
    • 2008
  • With recent trend in domestic and global market requiring architectures' conversion into skyscrapers seasoned with the features of landmarks, structural problems in relation with explosive spatting during fire emergencies are arising as controversial issues. Accordingly, many productive researches have been made in relation to the reinforcement techniques for improving fire resistance and the number of applications in the field is gradually increasing. In this study, a ductile outline form using ECC (Engineered Cementations Composites) was made with improvements on the structure and fire resistance to examine its applicability. Also, currently in Japan, the number of studies and applications is increasing focusing on reduction of construction time and improvement of workability with application of Half-PCa method. However, using such method of construction, large structural members decrease the utilization of space and architecture-wise, there is a disadvantage of the weight increase. Therefore, in such context, it would be worth reducing the weight of the structural members by reducing the size using ECC. In addition, its excellent pseudo strain-hardening due to fiber may have great effects on seismic designs. In the mean time, this study planned 3 equal conditions for mix water, PVA fiber and additives excluding binder and refractory to evaluate the mechanical properties of resistance against pressure and internal force. Finally, an evaluation was executed on the fire resistance of the newly made ductile outline form. As a result, from ECC-I to ECC-III, all showed excellent mechanical properties due to pseudo strain-hardening and in the fire resistance test conducted with ISO 834 heating curve, most of them tended to be in the range of the reference temperature (538℃-180min), so there was no occurrence of any explosive spatting.

  • PDF

Nonlinear Finite Element Analysis on the Transmission of Column Loads through Slab-Column Connections

  • 윤영수;이주하;손유신;이승훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.466-469
    • /
    • 2006
  • This paper presents the structural characteristics of slab-column connections by using nonlinear finite element analysis. FEA considering material non-linearity was performed to investigate average column strain, failure mode, principal stress distribution, and steel yielding conditions for various slab-column members. In addition, to investigate alternative methods for improving the strength of interior column-slab joints, some specimens were provided with different reinforcing types of high-strength concrete puddling, high-strength column longitudinal steels, dowel bars, and high-strength concrete core. To make certain of the reliability of the analytical program, analysis results for concrete material model developed and two specimens with and without puddling were compared with experimental results. It was found that providing the alternative reinforcing methods in the slab-column joint results in a significant improvement in performance. This includes an increase in the axial compressive strength, greater loading stiffness, and ductility.

  • PDF

Improvement on Moment Resistance of a Concealed Timber Post Base Joint

  • Humbert, Jerome;Lee, Sang-Joon;Park, Joo-Saeng;Park, Moon-Jae
    • 한국가구학회지
    • /
    • 제24권4호
    • /
    • pp.444-451
    • /
    • 2013
  • In this paper, experimental results were presented on the moment resistance of a concealed timber post base joint aimed at replacing in a modern design introduced lately the wood to wood joints used in the traditional Korean timber house - Hanok. Preliminary results showed that the original configuration of the joint offers a limited moment resistance and a low ductility and energy dissipation. In an attempt to mitigate those limitations without undergoing major changes in the connector, three new configurations were proposed and investigated. Motivated by the wish to prevent the early failure in welds, a first approach consists in directly bolting the connector's upper plate to lower the stress on the weak welds. Alternatively, another approach focused on increasing the strength of these welds by extending their length to the full width of the metal wings. Finally, a third configuration investigated the effect of those two approaches combined. In conclusion, reinforcing the welds found out to be the best option among the presented ones. As a result, this connector considered to show proper ability for use in earthquake-resistant structures with suited lateral-resistant structural elements.

  • PDF

Microstructure and Mechanical Properties of Ni3Al Matrix Composites with Fine Aluminum Oxide by PM Method

  • Han, Chang-Suk;Choi, Dong-Nyeok
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.495-498
    • /
    • 2018
  • Intermetallic compound matrix composites have been expected to be established as high temperature structural components. $Ni_3Al$ is a representative intermetallic alloy, which has excellent ductility even at room temperature by adding certain alloying elements. $Ni_3Al$ matrix composites with aluminum oxide particles, which are formed by the in-situ reaction between the alloy and aluminum borate whiskers, are fabricated by a powder metallurgical method. The addition of aluminum borate whiskers disperses the synthetic aluminum oxide particles during sintering and dramatically increases the strength of the composite. The uniform dispersion of reaction synthesized aluminum oxide particles and the uniform solution of boron in the matrix seem to play an important role in the improvement in strength. There is a dramatic increase in strength with the addition of the whisker, and the maximum value is obtained at a 10 vol% addition of whisker. The $Ni_3Al$ composite with 10 vol% aluminum oxide particles $0.3{\mu}m$ in size and with 0.1 wt% boron powder fabricated by the conventional powder metallurgical process does not have such high strength because of inhomogeneous distribution of aluminum oxide particles and of boron. The tensile strength of the $Ni_3Al$ with a 10 vol% aluminum borate whisker reaches more than twice the value, 930 MPa, of the parent alloy. No third phase is observed between the aluminum oxide and the matrix.

Experimental behavior of eccentrically loaded R.C. short columns strengthened using GFRP wrapping

  • Elwan, S.K.;Rashed, A.S.
    • Structural Engineering and Mechanics
    • /
    • 제39권2호
    • /
    • pp.207-221
    • /
    • 2011
  • This paper aims to study the behavior of short reinforced concrete columns confined with external glass Fiber Reinforced Polymers (GFRP) sheets under eccentric loads. The experimental part of the study was achieved by testing 9 specimens under eccentric compression. Three eccentricity ratios corresponding to e/t = 0, 0.10, 0.50 in one direction of the column were used. Specimens were divided into three groups. The first group was the control one without confinement. The second group was fully wrapped with GFRP laminates before loading. The third group was wrapped under loading after reaching 75% of failure loads of the control specimens. The third group was investigated in order to represent the practical case of strengthening a loaded column with FRP laminates. All specimens were loaded until failure. The results show that GFRP laminates enhances both failure load and ductility response of eccentrically loaded column. Moreover, the study also illustrates the effect of confinement on the first crack load, lateral deformation, strain in reinforcement and failure pattern. Based on the analysis of the experimental results, a simple model has been proposed to predict the improvement of load carrying capacity under different eccentricity ratios. The predicted equation takes into consideration the eccentricity to cross section depth ratio, the ultimate strength of GFRP, the thickness of wrapping laminate, and the time of wrapping (before loading and under loading). A good correlation was obtained between experimental and analytical results.

Impact of fine fillers on flowability, fiber dispersion, strength, and tensile strain hardening of UHPC

  • Chung-Chan Hung;Kuo-Wei Wen;Yueh-Ting Chen
    • Advances in concrete construction
    • /
    • 제15권6호
    • /
    • pp.405-417
    • /
    • 2023
  • While ultra-high performance concrete (UHPC) is commonly reinforced with micro straight steel fibers in existing applications, studies have indicated that the use of deformed steel macro-fibers leads to enhanced ductility and post-peak responses for UHPC structural elements, which is of particular importance for earthquake-resistant structures. However, there are potential concerns regarding the use of UHPC reinforced with macro-fibers due to the issues of workability and fiber distribution. The objective of this study was to address these issues by extensively investigating the restricted and non-restricted deformability, filling ability, horizontal and vertical velocities, and passing ability of UHPC containing macro hooked-end steel fibers. A new approach is suggested to examine the homogeneity of fiber distribution in UHPC. The influences of ultra-fine fillers and steel macro-fibers on the workability of fresh UHPC and the mechanics of hardened UHPC were examined. It was found that although increasing the ratio of quartz powder to cement led to an improvement in the workability and tensile strain hardening behavior of UHPC, it reduced the fiber distribution homogeneity. The addition of 1% volume fraction of macro-fibers in UHPC improved workability, but reduced its compressive strength, which is contrary to the effect of micro-fiber inclusion in UHPC.

Seismic resistance of exterior beam-column joints with non-conventional confinement reinforcement detailing

  • Bindhu, K.R.;Jaya, K.P.;Manicka Selvam, V.K.
    • Structural Engineering and Mechanics
    • /
    • 제30권6호
    • /
    • pp.733-761
    • /
    • 2008
  • The failure of reinforced concrete structures in recent earthquakes caused concern about the performance of beam column joints. Confinement of joint is one of the ways to improve the performance of beam column joints during earthquakes. This paper describes an experimental study of exterior beam-column joints with two non-conventional reinforcement arrangements. One exterior beam-column joint of a six story building in seismic zone III of India was designed for earthquake loading. The transverse reinforcement of the joint assemblages were detailed as per IS 13920:1993 and IS 456:2000 respectively. The proposed nonconventional reinforcement was provided in the form of diagonal reinforcement on the faces of the joint, as a replacement of stirrups in the joint region for joints detailed as per IS 13920 and as additional reinforcement for joints detailed as per IS 456. These newly proposed detailing have the basic advantage of reducing the reinforcement congestion at the joint region. In order to study and compare the performance of joint with different detailing, four types of one-third scale specimens were cast (two numbers in each type). The main objective of the present study is to investigate the effectiveness of the proposed reinforcement detailing. All the specimens were tested under reverse cyclic loading, with appropriate axial load. From the test results, it was found that the beam-column joint having confining reinforcement as per IS: 456 with nonconventional detailing performed well. Test results indicate that the non-conventionally detailed specimens, Type 2 and Type 4 have an improvement in average ductility of 16% and 119% than their conventionally detailed counter parts (Type1 and Type 3). Further, the joint shear capacity of the Type 2 and Type 4 specimens are improved by 8.4% and 15.6% than the corresponding specimens of Type 1 and Type 3 respectively. The present study proposes a closed form expression to compute the yield and ultimate load of the system. This is accomplished using the theory of statics and the failure pattern observed during testing. Good correlation is found between the theoretical and experimental results.

A study on detailing gusset plate and bracing members in concentrically braced frame structures

  • Hassan, M.S.;Salawdeh, S.;Hunt, A.;Broderick, B.M.;Goggins, J.
    • Advances in Computational Design
    • /
    • 제3권3호
    • /
    • pp.233-267
    • /
    • 2018
  • Conventional seismic design of concentrically braced frame (CBF) structures suggests that the gusset plate connecting a steel brace to beams and/or columns should be designed as non-dissipative in earthquakes, while the steel brace members should be designed as dissipative elements. These design intentions lead to thicker and larger gusset plates in design on one hand and a potentially under-rated contribution of gusset plates in design, on the other hand. In contrast, research has shown that compact and thinner gusset plates designed in accordance with the elliptical clearance method rather than the conventional standard linear clearance method can enhance system ductility and energy dissipation capacity in concentrically braced steel frames. In order to assess the two design methods, six cyclic push-over tests on full scale models of concentric braced steel frame structures were conducted. Furthermore, a 3D finite element (FE) shell model, incorporating state-of-the-art tools and techniques in numerical simulation, was developed that successfully replicates the response of gusset plate and bracing members under fully reversed cyclic axial loading. Direct measurements from strain gauges applied to the physical models were used primarily to validate FE models, while comparisons of hysteresis load-displacement loops from physical and numerical models were used to highlight the overall performance of the FE models. The study shows the two design methods attain structural response as per the design intentions; however, the elliptical clearance method has a superiority over the standard linear method as a fact of improving detailing of the gusset plates, enhancing resisting capacity and improving deformability of a CBF structure. Considerations were proposed for improvement of guidelines for detailing gusset plates and bracing members in CBF structures.

Push-out tests on demountable high-strength friction-grip bolt shear connectors in steel-precast UHPC composite beams for accelerated bridge construction

  • Haibo, Jiang;Haozhen, Fang;Jinpeng, Wu;Zhuangcheng, Fang;Shu, Fang;Gongfa, Chen
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.797-818
    • /
    • 2022
  • Steel-precast ultra-high-performance concrete (UHPC) composite beams with demountable high-strength friction-grip bolt (HSFGB) shear connectors can be used for accelerated bridge construction (ABC) and achieve excellent structural performance, which is expected to be dismantled and recycled at the end of the service life. However, no investigation focuses on the demountability and reusability of such composite beams, as well as the installation difficulties during construction. To address this issue, this study conducted twelve push-out tests to investigate the effects of assembly condition, bolt grade, bolt-hole clearance, infilling grout and pretension on the crack pattern, failure mode, load-slip/uplift relationship, and the structural performance in terms of ultimate shear strength, friction resistance, shear stiffness and slip capacity. The experimental results demonstrated that the presented composite beams exhibited favorable demountability and reusability, in which no significant reduction in strength (less than 3%) and stiffness (less than 5%), but a slight improvement in ductility was observed for the reassembled specimens. Employing oversized preformed holes could ease the fabrication and installation process, yet led to a considerable degradation in both strength and stiffness. With filling the oversized holes with grout, an effective enhancement of the strength and stiffness can be achieved, while causing a difficulty in the demounting of shear connectors. On the basis of the experimental results, more accurate formulations, which considered the effect of bolt-hole clearance, were proposed to predict the shear strength as well as the load-slip relationship of HSFGBs in steel-precast UHPC composite beams.