• Title/Summary/Keyword: structural deterioration

Search Result 603, Processing Time 0.034 seconds

Predictive model for the shear strength of concrete beams reinforced with longitudinal FRP bars

  • Alzabeebee, Saif;Dhahir, Moahmmed K.;Keawsawasvong, Suraparb
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.143-154
    • /
    • 2022
  • Corrosion of steel reinforcement is considered as the main cause of concrete structures deterioration, especially those under humid environmental conditions. Hence, fiber reinforced polymer (FRP) bars are being increasingly used as a replacement for conventional steel owing to their non-corrodible characteristics. However, predicting the shear strength of beams reinforced with FRP bars still challenging due to the lack of robust shear theory. Thus, this paper aims to develop an explicit data driven based model to predict the shear strength of FRP reinforced beams using multi-objective evolutionary polynomial regression analysis (MOGA-EPR) as data driven models learn the behavior from the input data without the need to employee a theory that aid the derivation, and thus they have an enhanced accuracy. This study also evaluates the accuracy of predictive models of shear strength of FRP reinforced concrete beams employed by different design codes by calculating and comparing the values of the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2), and percentage of prediction within error range of ±20% (a20-index). Experimental database has been developed and employed in the model learning, validation, and accuracy examination. The statistical analysis illustrated the robustness of the developed model with MAE, RMSE, 𝜇, 𝜎, R2, and a20-index of 14.6, 20.8, 1.05, 0.27, 0.85, and 0.61, respectively for training data and 10.4, 14.1, 0.98, 0.25, 0.94, and 0.60, respectively for validation data. Furthermore, the developed model achieved much better predictions than the standard predictive models as it scored lower MAE, RMSE, and 𝜎, and higher R2 and a20-index. The new model can be used in future with confidence in optimized designs as its accuracy is higher than standard predictive models.

Intelligent Bridge Safety Prediction Edge System (지능형 교량 안전성 예측 엣지 시스템)

  • Jinhyo Park;Taejin Lee;Yong-Geun Hong;Joosang Youn
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.357-362
    • /
    • 2023
  • Bridges are important transportation infrastructure, but they are subject to damage and cracking due to various environmental factors and constant traffic loads, which accelerate their aging. With many bridges now older than their original construction, there is a need for systems to ensure safety and diagnose deterioration. Bridges are already utilizing structural health monitoring (SHM) technology to monitor the condition of bridges in real time or periodically. Along with this technology, the development of intelligent bridge monitoring technology utilizing artificial intelligence and Internet of Things technology is underway. In this paper, we study an edge system technique for predicting bridge safety using fast Fourier transform and dimensionality reduction algorithm for maintenance of aging bridges. In particular, unlike previous studies, we investigate whether it is possible to form a dataset using sensor data collected from actual bridges and check the safety of bridges.

Clinical Midterm Results of Surgical Aortic Valve Replacement with Sutureless Valves

  • Soonchang Hong;Jung-Woo Son;Yungjin Yoon
    • Journal of Chest Surgery
    • /
    • v.57 no.3
    • /
    • pp.255-262
    • /
    • 2024
  • Background: Sutureless aortic valves may enable shorter procedure times, which benefits patients with elevated surgical risk. We describe the outcomes of patients with aortic stenosis who underwent aortic valve replacement (AVR) using the sutureless Perceval aortic bioprosthesis. Methods: Data from a retrospective cohort were obtained from a clinical database. The study enrolled patients with symptomatic severe aortic stenosis who underwent surgical AVR with a sutureless bioprosthesis between August 2015 and December 2020. In total, 113 patients were included (mean age, 75.3±8.4 years; 57.5% women; median Society of Thoracic Surgeons score, 9.7%; mean follow-up period, 51.19±20.6 months). Of these patients, 41 were octogenarians (36.2%) and 3 were nonagenarians (2.6%). Transthoracic echocardiography was employed to assess changes in ejection fraction (EF), left ventricular mass index (LVMI), and mean pressure gradient (MPG). Results: The in-hospital mortality rate was 2.6%, and 13 patients developed new-onset atrial fibrillation. A permanent pacemaker was implanted in 3 patients (2.6%). The median intensive care unit stay was 1 day (interquartile range [IQR], 1-2 days), and the median hospital stay was 12 days (IQR, 9.5-15 days). The overall survival rate at 5 years was 95.9%. LVMI and MPG were reduced postoperatively, while EF increased over the follow-up period. No structural valve deterioration was observed, and no meaningful paravalvular leakage developed during follow-up. Conclusion: The use of a sutureless valve in the aortic position is safe and feasible, even for high-risk elderly patients requiring surgical AVR. LVMI and MPG decreased postoperatively, while EF increased over the follow-up period.

Pericardial Versus Porcine Valves for Surgical Aortic Valve Replacement

  • Hong Ju Shin;Wan Kee Kim;Jin Kyoung Kim;Joon Bum Kim;Sung-Ho Jung;Suk Jung Choo;Cheol Hyun Chung;Jae Won Lee
    • Korean Circulation Journal
    • /
    • v.52 no.2
    • /
    • pp.136-146
    • /
    • 2022
  • Background and Objectives: There still are controversies on which type between bovine pericardial and porcine valves is superior in the setting of aortic valve replacement (AVR). This study aims to compare clinical outcomes of AVR using between pericardial or porcine valves. Methods: The study involved consecutive 636 patients underwent isolated AVR using stented bioprosthetic valves between January 2000 and May 2016. Of these, pericardial and porcine valves were implanted in 410 (pericardial group) and 226 patients (porcine group), respectively. Clinical outcomes including survival, structural valve deterioration (SVD) and trans-valvular pressure gradient were compared between the groups. To adjust for potential selection bias, inverse probability treatment weighting (IPTW) was conducted. Results: The mean follow-up duration was 60.1±50.2 months. There were no significant differences in the rates of early mortality (3.1% vs. 3.1%; p=0.81) and SVD (0.3%/patient-year [PY] vs. 0.5%/PY; p=0.33) between groups. After adjustment using IPTW, however, landmark mortality analyses showed a significantly lower late (>8 years) mortality risk in pericardial group over porcine group (hazard ratio [HR], 0.61; 95% confidence interval, [CI] 0.41-0.90; p=0.01) while the risks of SVD were not significantly difference between groups (HR, 0.45; 95% CI, 0.12-1.70; p=0.24). Mean pressure gradient across prosthetic AV was lower in the Pericardial group than the Porcine group at both immediate postoperative point and latest follow-up (p values <0.001). Conclusions: In patients undergoing bioprosthetic surgical AVR, bovine pericardial valves showed superior results in terms of postoperative hemodynamic profiles and late survival rates over porcine valves.

Polyarteritis Nodosa Confined to the Kidneys in a Patient with Proteinuria and Mild Renal Impairment (단백뇨와 경도 신기능장애가 있는 환자에서 진단된 신장에 국한된 결절성 다발성 동맥염 1예: 증례 보고)

  • Young Kyeong Seo;Taehee Kim;Yeong Hoon Kim;Yunmi Kim;Hyuk Huh;Byeong Woo Kim
    • The Korean Journal of Medicine
    • /
    • v.99 no.2
    • /
    • pp.116-121
    • /
    • 2024
  • Polyarteritis nodosa (PAN) is a systemic necrotizing vasculitis predominantly involving medium- or small-sized arteries, typically of the kidneys and other internal organs. Given the rarity of PAN and the variable clinical presentation, diagnosis is challenging and, to date, no definitive diagnostic marker has been identified. A patient diagnosed with immunoglobulin A nephropathy was observed to exhibit deterioration in renal function. To determine whether new structural abnormalities had developed, computed tomography scans of the kidneys, ureters, and bladder were obtained. Both kidneys exhibited multiple cortical defects, and a renal angiogram was performed to determine the cause. Angiography revealed partial obliteration of the left distal renal artery branches and multifocal extensive infarctions in both kidneys, and the patient was diagnosed with renal-limited PAN. Following steroid monotherapy, an improvement in renal function was observed. We believe that this case report may be helpful to physicians who assess and treat patients with suspected renal-limited PAN.

Midterm Results of the Bioprosthesis in Mitral Position (조직판막을 이용한 승모판 치환술의 중기 성적)

  • Cho, Hyun-Jin;Lee, Jae-Won;Jung, Sung-Ho;Je, Hyoung-Gon;Choo, Suk-Jung;Song, Hyun;Chung, Cheol-Hyun
    • Journal of Chest Surgery
    • /
    • v.41 no.6
    • /
    • pp.695-702
    • /
    • 2008
  • Background: The choice between a bioprosthetic and a mechanical valve is an important decision in cardiac valve surgery, and the durability of the tissue valve is a major decision factor. We retrospectively evaluated the midterm results of bioprosthetic valve replacement in the mitral position. Material and Method: The subjects were all patients who had undergone mitral bioprosthesis replacement between July 1989 and August 200.7. Among the 216 patients, there were 236 surgical cases. The mean age was $63{\pm}15$ years, and the male to female ratio was 1 : 3. We retrospectively analyzed hospital and outpatient records such that the total follow-up duration amounted to 760.2 patient-years, and the mean follow-up duration was $41.9{\pm}40.7$ months (range $0{\sim}212$ months). Result: Early death occurred in 18 patients (8.3%), and 13 of these underwent concomitant cardiac procedures. The survival rate after 5 years was $79.9{\pm}3.5%$, and the survival rate after 8 years was $65.5{\pm}5.5%$, while freedom from structural valve deterioration (SVD) was $96.2{\pm}2.2%$ at 5 years and $85.9{\pm}5.3%$ at 8 years. Freedom from reoperation was $90.6{\pm}1.7%$ at 5 years and $90.4{\pm}4.2%$ at 8 years, while freedom from reoperation for SVD was $98.1{\pm}1.2%$ at 5 years and $92.3{\pm}4.1%$ at 8 years. On multivariate analysis of preoperative risk factors, small valve size (between 25mm and 27mm) was a significant risk factor for reoperation, and low LV ejection fraction (<40%) was a significant risk factor for SVD and mortality. Conclusion: Survival and freedom from reoperation for SVD in mitral bioprosthesis replacement had acceptable midterm results, but freedom from SVD Was relatively low. In particular, since SVD increased sharply at the eighth postoperative year, frequent follow-up and echocardiograms around that time will be helpful for the early detection of SVD. It will be necessary to conduct further studies involving long-term follow-up and more patients.

Correlation Analysis between Damage of Expansion Joints and Response of Deck in RC Slab Bridges (RC 슬래브교의 신축이음 손상과 바닥판 응답과의 상관관계 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Park, Ki-Tae;Jung, Kyu-San;Kim, Yu-Hee;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.245-253
    • /
    • 2021
  • RC slab bridges account for the largest portion of deteriorated bridges in Korea. However, most RC slabs are not included in the first and second classes of bridges, which are subject to bridge safety management and maintenance. The highest damaged components in highway bridges are the subsidiary facilities including expansion joints and bearings. In particular, leakage through expansion joints causes deterioration and cracks of concrete and exposure of reinforced bars. Therefore, this study analyzed the effect of adhesion damage at expansion joints on the response of the deck in RC slab bridges. When the spacing between the expansion joints at both ends was closely adhered, cracks occurred in the concrete at both ends of the deck due to the resistance rigidity at the expansion joints. Based on the response results, the correlation analysis between displacements in the longitudinal direction of the expansion joint and concrete stress at both ends of the deck for each damage scenario was performed to investigate the effect of the occurrence of damage on the bridge behavior. When expansion joint devices at both sides were damaged, the correlation between displacement and stress showed a low correlation of 0.18 when the vehicles proceeded along all the lanes. Compared with those in the intact state, the deflections of the deck in the damaged case at both sides showed a low correlation of 0.34 to 0.53 while the vehicle passed and 0.17 to 0.43 after the vehicle passed. This means that the occurrence of cracks in the ends of concrete changed the behavior of the deck. Therefore, data-deriven damage detection could be developed to manage the damage to expansion joints that cause damage and deterioration of the deck.

Evaluation of Chemical Resistance Performance of Synthetic Rubber and Cement Based Injection Repair Materials Used in Underground Concrete Structures (지하 콘크리트 구조물에 적용되는 합성고무계 및 시멘트계 주입형 보수재료의 화학 저항성능평가)

  • Kim, Soo-Yeon;Lee, Yeon-Sil;Song, Je-Young;Kim, Byoungil;Oh, Sang-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.148-155
    • /
    • 2017
  • In this study, by using the international standards ISO TS 16774, Part 2 Test method for chemical resistance as a quality control method of injection type repair material used for leakage crack of underground concrete structure, the performance requirement against of chemical environment of underground concrete structures for repair materials was tested. For this testing 3 types for each of the 2 classes of repair materials(synthetic rubber, cement), with a total of 9 types repair materials, were selected and examined. As a result, the test results showed that the smallest performance deterioration by the change in the mass was with the synthetic rubber(RG) type as opposed to the cement type system, showing that the synthetic rubber type had the strongest relative resistance to chemical exposure. Furthermore, it is necessary to investigate the material with high resistance to chemical substances and to examine the material which can increase resistance to sodium hydroxide and sodium chloride in cement system. These results can be used as a basic index for the selection of repair materials with the strongest resistance to chemical environment found in concrete structures. In addition, it is expected that the test results derived in this study can be used as reference data that can be reflected in the quality improvement of the maintenance material to be developed later.

A Study on Adhesion Characteristics and Physical Properties of Animal Glue Added Genipin (제니핀을 첨가한 아교의 접착 특성과 물성 변화 연구)

  • Lee, Jun Ho;Yu, Ji A;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.34 no.3
    • /
    • pp.157-166
    • /
    • 2018
  • In this study, gelatin binding ability was increased by adding cross linking agent to improve adhesive characteristic of animal glue. Animal glue added genipin measured gel strength and viscosity, the structural analysis, the color retention degree, elution degree, and rupture strength. And the water resistance and ultraviolet light resistance with the addition of genipin were compared. As a result of the study, the gel strength and viscosity increased with the amount of genipin. As a result of the structural analysis, in gelatin, the absorption peak of the triple structure of collagen structurally stabilized was observed. As a result of the color retention degree, the film was observed because of the lowered brightness. The amount of elution glue was increased with addition of genipin at $50^{\circ}C$ distilled water condition and rupture strength has increased with the amount of genipin. In the water resistance and light fastness, there was no appearance before and after deterioration due to the addition of genipin. Based on the results of this study, it confirmed the adhesive characteristics of animal glue added genipin and examined the experimental method applicable for animal glue. After the addition of genipin, flexibility, re-solving, adhesive force, and curing speed, which are unique characteristics of glue, can be improved without disappearing, so it is expected that it will be applicable to production of animal glue and conservation of cultural heritage when homogeneous glue is secured.

Pore Structure and Physical Properties of Heterogeneous Bonding Materials of Recycled Aggregate according to Carbonation Reforming (순환 골재 부착 이질재의 탄산화 개질에 따른 공극구조 및 물리적 특성)

  • Shin, Jin-Hak;Kim, Han-Sic;Chung, Lan;Ha, Jung-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • At present, about 40 million tons of concrete is dismantled each year, which accounts for the largest portion of the total amount of construction waste with 60.8%. It is known about 97.5% of it is recycled. However, most of the usage of waste concrete is limited to lower value-added business areas, and considering the increasing amount of waste concrete generated due to the deterioration of structures, the need for converting waste concrete to structural concrete is urgent. Therefore, this study aims at estimating the period for the optimum carbonation reforming to improve the quality of recycled aggregate, by making use of the method of accelerated carbonation reforming of the bonding heterogeneous (cement paste and mortar) for the purpose of converting recycled aggregate to structural concrete. Based on the period appropriate for the heterogeneous thickness and each bonding thickness of recycled aggregate which was drawn from previous studies, the changes in the characteristics and physical properties of pore structure according to progress of accelerated carbonation were analyzed. The result shows that with the progress of carbonation, the pore volume and the percentage of water absorption of the bonding heterogeneous decreased and the density increased, which indicates improvement of the product quality. But after certain age, the tendency was reversed and the product quality deteriorated. Synthesizing the results of previous studies and those of the present study, this study proposed 4 days and 14 days respectively for the period for the optimum carbonation reforming of recycled fine aggregate and recycled coarse aggregate.