• Title/Summary/Keyword: structural degradation

Search Result 804, Processing Time 0.033 seconds

Effects of Light on Disassembly of Chloroplast during Senescence of Detached Leaves in Phaseolus vulgaris

  • Lee Dong-Hee;Hong Jung-Hee;Kim Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.69-80
    • /
    • 1997
  • Effects of light on leaf senescence of Phaseolus vulgaris were investigated by measuring the disassembly of chlorophyll-protein complexes in detached leaves which had been kept in the dark or under light. The loss of chlorophyll accompanied by degradation of chlorophyll-protein complexes. PSI (photosystem I) complex containing LHCI (light harvesting complex of PSI) apoproteins was rapidly decreased after the early stage of dark-induced senescence. RC(reaction center)-Core3 was slightly increased until 4 d and slowly decreased thereafter. As disassembly of LHCII trimer progressed after the late stage of senescence, there was a steady increase in the relative amount of SC(small complex)-2 containing LHCII monomer. On the other hand, white and red light adaptation caused the structural stability of chlorophyll-protein complexes during dark-induced senescence. Particularly, red light was more effective in the retardation of LHCII breakdown than white light, whereas white light was slightly effect in protecting the disassembly of PSI complex compared to red light. These results suggest, therefore, that light may be a regulatory factor for stability of chlorophyll-protein complexes in the senescent leaves.

  • PDF

Characterization of microtip emitters based on titanium carbide-coated carbon nanotubes (티타늄 카바이드가 코팅된 탄소나노튜브 미세팁 이미터의 전계방출 특성 분석)

  • Kim, Young-Kwang;Kim, Jong-Pil;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1218-1219
    • /
    • 2008
  • Thin films (< 30 nm) of titanium carbide (TiC) are coated on carbon nanotubes (CNTs), which are directly grown on nano-sized ($\sim$ 500 nm in diameter) conical-type tungsten (W) tips, by employing an inductively coupled plasma-chemical vapor deposition (ICP-CVD) technique. Any modification in structural properties (such as length to diameter ratio, crystal quality, and growth behavior) of CNTs due to TiC-coating has been monitored by using high-resolution TEM, field-emission SEM, and Raman spectroscopy. Driving voltage for obtaining the same level of emission current in CNTs-emitter is significantly reduced by TiC-coating. It is also worthy of being noted that the degradation of emission current due to prolonged operation (up to 30 h) is remarkably suppressed by TiC-coating.

  • PDF

A review on modelling and monitoring of railway ballast

  • Ngamkhanong, Chayut;Kaewunruen, Sakdirat;Baniotopoulos, Charalampos
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.195-220
    • /
    • 2017
  • Nowadays, railway system plays a significant role in transportation, conveying cargo, passengers, minerals, grains, and so forth. Railway ballasted track is a conventional railway track as can be seen all over the world. Ballast, located underneath the sleepers, is the most important elements on ballasted track, which has many functions and requires routine maintenance. Ballast needs to be maintained frequently to prevent rail buckling, settlement, misalignment so that ballast has to be modelled accurately. Continuum model was introduced to model granular material and was extended in ballast. However, ballast is a heterogeneous material with highly nonlinear behaviour. Hence, ballast could not be modelled accurately in continuum model due to the discontinuities nature and material degradation of ballast. Discrete element modelling (DEM) is proposed as an alternative approach that provides insight into constitutive model, realistic particle, and contact algorithm between each particle. DEM has been studied in many recent decades. However, there are limitations due to the high computational time and memory consumption, which cause the lack of using in high range. This paper presents a review of recent ballast modelling with benefits and drawbacks. Ballast particles are illustrated either circular, circular crump, spherical, spherical crump, super-quadric, polygonal and polyhedral. Moreover, the gaps and limitations of previous studies are also summarized. The outcome of this study will help the understanding into different ballast modelling and particle. The insight information can be used to improve ballast modelling and monitoring for condition-based track maintenance.

Three-dimensional Turbulent Flow Analysis in Curved Piping Systems Susceptible to Flow-Accelerated Corrosion (유동가속부식이 잠재한 곡관내의 3차원 난류유동 해석)

  • Jo, Jong-Chull;Kim, Yun-Il;Choi, Seok-Ki
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.900-907
    • /
    • 2000
  • The three-dimensional turbulent flow in curved pipes susceptible to flow-accelerated corrosion has been analyzed numerically to predict the pressure and shear stress distributions on the inner surface of the pipes. The analysis employs the body-fitted non-orthogonal curvilinear coordinate system and a standard $ {\kappa}-{\varepsilon}$ turbulence model with wall function method. The finite volume method is used to discretize the governing equations. The convection term is approximated by a high-resolution and bounded discretization scheme. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of a modified version of momentum interpolation scheme. The SIMPLE algorithm is employed for the pressure and velocity coupling. The numerical calculations have been performed for two curved pipes with different bend angles and curvature radii, and discussions have been made on the distributions of the primary and secondary flow velocities, pressure and shear stress on the inner surface of the pipe to examine applicability of the present analysis method. As the result it is seen that the method is effective to predict the susceptible systems or their local areas where the fluid velocity or local turbulence is so high that the structural integrity can be threatened by wall thinning degradation due to flow-accelerated corrosion.

  • PDF

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.

Train-induced dynamic behavior analysis of longitudinal girder in cable-stayed bridge

  • Yang, Dong-Hui;Yi, Ting-Hua;Li, Hong-Nan;Liu, Hua;Liu, Tiejun
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.549-559
    • /
    • 2018
  • The dynamic behaviors of the bridge structures have great effects on the comfortability and safety of running high-speed trains, which can also reflect the structural degradation. This paper aims to reveal the characteristics of the dynamic behaviors induced by train loadings for a combined highway and railway bridge. Monitoring-based analysis of the acceleration and dynamic displacement of the bridge girder is carried out. The effects of train loadings on the vertical acceleration of the bridge girder are analyzed; the spatial variability of the train-induced lateral girder displacement is studied; and statistical analysis has been performed for the daily extreme values of the train-induced girder deflections. It is revealed that there are great time and spatial variabilities for the acceleration induced by train loadings for the combined highway and railway cable-stayed bridge. The daily extreme values of the train-induced girder deflections can be well fitted by the general extreme value distribution.

Study of a new type of steel slit shear wall with introduced out-of-plane folding

  • He, Liusheng;Chen, Shang;Jiang, Huanjun
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.229-237
    • /
    • 2020
  • The steel slit shear wall (SSSW), made by cutting vertical slits in a steel plate, is increasingly used for the seismic protection of building structures. In the domain of thin plate shear walls, the out-of-plane buckling together with the potential fracture developed at slit ends at large lateral deformation may result in degraded shear strength and energy dissipation, which is not desirable in view of seismic design. To address this issue, the present study proposed a new type of SSSW made by intentionally introducing initial out-of-plane folding into the originally flat slitted plate. Quasi-static cyclic tests on three SSSWs with different amplitudes of introduced out-of-plane folding were conducted to study their shear strength, elastic stiffness, energy dissipation capacity and buckling behavior. By introducing proper amplitude of out-of-plane folding into the SSSW fracture at slit ends was eliminated, plumper hysteretic behavior was obtained and there was nearly no strength degradation. A method to estimate the shear strength and elastic stiffness of the new SSSW was also proposed.

Fast Approach for Stereo Balancing Mapping Function

  • Kim, J.S.;Lee, S.K.;Kim, T.Y.;Lee, J.Y.;Choi, J.S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.286-289
    • /
    • 2009
  • This paper presents an effective approach to minimize recursive computations for balancing stereo pairs by using disparity vector errors and its directional histogram. A stereo balancing function is computed from the correspondent pixels between two images, and a simple approach is to find the matching blocks of two images. However, this procedure requires recursive operation, and its computation cost is very high. Therefore, in this paper, we propose an efficient balance method using structural similarity index and a partial re-searching scheme to reduce the computation cost considerably. For this purpose, we determine if re-searching for each block is necessary or not by using the errors and the directional histogram of disparity vectors. Experiment results show that the performance of the proposed approach can save the computations significantly with ignorable image quality degradation compared with full re-search approach.

  • PDF

A Study on the Relationship between the Cutting Force and the Critical Ejecting Distance of Disk for a Mill Turret (복합공구대 디스크임계돌출거리와 절삭력과의 관계에 관한 연구)

  • Choi, Ji-Hwan;Kim, Chae-Sil;Cho, Su-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.110-116
    • /
    • 2013
  • Curvic coupling of mill turret should maintain disk weight and the cutting resistance which occurs the machining operation and must also have power transmission function. In order to improve machining operation range, the ejecting distance from curvic coupling to the disk must increase as much as possible. But moment is increased by the lack of capacity of the curvic coupling. Increase of moment is the cause of vibration/noise and degradation of machining performance not only stability problem. The manufacturer of mill turret has no the design information between the ejecting distance and the cutting resistance with safety of curvic coupling. Therefore this study describes a finite element analysis model of mill turret using ANSYS workbench. The structural analyses and modal analyses with varying of the ejecting distances and cutting resistances are performed. Finally the equation for relationship between the critical ejecting distance and the cutting resistance is defined under 5 of the safety factor for the maximum von-Mises stress at the curvic coupling.

Charge-discharge Properties of Positive Active Material Li(Cr0.4Mn0.6)O2 (정극 활물질 Li(Cr0.4Mn0.6)O2의 충ㆍ방전 특성)

  • Wee, Sung-Dong;Jeong, In-Seong;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1085-1089
    • /
    • 2004
  • An impedance properties of the positive active material Li(Cr$_{0.4}$Mn$_{0.6}$)O$_2$ are measured by the changeable trend to the time. The charge-discharge capacities of 297 mAh(g)$^{-1}$ 175 mAh(g)$^{-1}$ are obtained by the made cell with the active material that the Cr was added to LiMnO$_2$ to prevent structural degradation of an electrode active material with impedance of 75 Ω to get at an initial hour. Resultantly, these variations which the impedances enhanced continually, were not watched the impeditive variations as the results of the delay time that the positive thin films and the references have been soaked all together in the solution of electrolyte of 1M LiPF$_{6}$ EC/DEC(l/2). Accordingly, it means an amount increased of the discharged capacities in the view of the results that the impeditive values were decreased are known already through a authorized paper.per.