• Title/Summary/Keyword: structural degradation

Search Result 804, Processing Time 0.026 seconds

A study of TV Animation broadcasting for system circumference by an unguarded position and lose (TV animation 총량제에 의한 외주제작 시스템의 허와 실에 대한 방향 연구)

  • Kim, Jae-ho
    • Journal of Science of Art and Design
    • /
    • v.11
    • /
    • pp.37-49
    • /
    • 2007
  • TV animation has come a long way to this date since popular animation programs were aired on TV, such as 'Run Little Tiger', 'Run Honey', 'Hurry-Scurry Yeongsimi', beginning with 'Wandering Magpie' on KBS in 1978. However, problematic production process has resulted in the degradation of quality. Consequently, the dwindling viewing rate forced animation advertisers to leave, and the animation production shrank. Under those unfavorable circumstances, the government started to heed messages transmitted from animation producers and went ahead with the 'animation broadcasting quota' in a bid to help revitalize Korean animation industry. This study aimed to identify problems and set the direction for the animation industry by analyzing its fundamental and structural problems.

  • PDF

Flexural Properties and Thermal Stability of Bifunctional/Tetrafunctional Epoxy Blends (2 -관능성 에폭시 수지 블렌드의 굴곡 특성과 열 안전성)

  • Yu, Hui-Yeol;Lee, Jae-Rak;Lee, Jong-Mun
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.75-80
    • /
    • 1994
  • Flexural properties and thermal stability have been studied as a function of blend composition in bifunctional DGERA (diglycidyl ether of hisphenol A)/tetrafunctional TGDDM(tetrag1ycidyl diamino diphenyl methane) cured with DDM(4, 4'-diamino diphenyl methane). The flexural modulus and the glass transition temperature increase with an increase of TGDDM and show discontinuous dependence on blend composition around the composition range of 80/20~60/40(L)GEBA/TGDDM). This can be explained with a structural phase inversion (ductile-to-brittle) in crosslinking networks. With increasing TGDDM, the maximum decomposition temperature(Ts) increases, whereas the activation energy during thermal degradation decreases.

  • PDF

Evaluation of Bond Properties of Reinforced Concrete with Corroded Reinforcement by Uniaxial Tension Testing

  • Kim, Hyung-Rae;Choi, Won-Chang;Yoon, Sang-Chun;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.43-52
    • /
    • 2016
  • The degradation of the load-bearing capacity of reinforced concrete beams due to corrosion has a profoundly negative impact on the structural safety and integrity of a structure. The literature is limited with regard to models of bond characteristics that relate to the reinforcement corrosion percentage. In this study, uniaxial tensile tests were conducted on specimens with irregular corrosion of their reinforced concrete. The development of cracks in the corroded area was found to be dependent on the level of corrosion, and transverse cracks developed due to tensile loading. Based on this crack development, the average stress versus deformation in the rebar and concrete could be determined experimentally and numerically. The results, determined via finite element analysis, were calibrated using the experimental results. In addition, bond elements for reinforced concrete with corrosion are proposed in this paper along with a relationship between the shear stiffness and corrosion level of rebar.

Fracture Behavior for Carbon Fiber Reinforced Plastic by Immersion (흡수에 따른 탄소섬유 강화수지의 파괴거동)

  • Kim, O. G.;Nam, K. W.;Ahn, B. H.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.402-410
    • /
    • 1996
  • Recently carbon fiber reinforced plastic(CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and chemical pipes. However, mechanical properties of such materials may change when CFRP are exposed to corrosive environment for long periods of time. Therefore, it is important to understand the effect of moisture absorption on mechanical properties of the CFRP. In this study, degradation behavior of immersed carbon fiber/epoxy resin composite material was investigated using acoustic emission(AE) technique. Fracture toughness test are performed on the compact tension(CT) test specimens that are pilled by two types of laminates $[0^{\circ}_2$/$90^{\circ}_2]_3s$ and $[0^{\circ}_2$/$90^{\circ}_2]_6s$During the fracture toughness test, AE test was carried out to monitor the damage of CFRP by moisture absorption. In spite of the change of moisture absorption rate, the fracture toughness of CFRP was not change. As immersion time increased, AE event count numbers decreased in low amplitude range of AE for amplitude distribution histogram. The event in low amplitude range was known to be generated by debonding of matrix-fiber interface. Therefore, decrease of AE event count numbers in low amplitude range represents that debonding of matrix-fiber interface which was probably generated by moisture absorption.

  • PDF

Robust Active Power Control of a Battery-Supported DSTATCOM to Enhance Wind Generation Power Flow

  • Mahdianpoor, Mohammad;Kiyoumarsi, Arash;Ataei, Mohammad;Hooshmand, Rahmat-Allah
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1357-1368
    • /
    • 2017
  • The lack of controllability over the wind causes fluctuations in the output power of the wind generators (WGs) located at the wind farms. Distribution Static Compensator (DSTATCOM) equipped with Battery Energy Storage System (BESS) can significantly smooth these fluctuations by injecting or absorbing appropriate amount of active power, thus, controlling the power flow of WGs. But because of the component aging and thermal drift, its harmonic filter parameters vary, resulting in performance degradation. In this paper, Quantitative Feedback Theory (QFT) is used as a robust control scheme in order to deactivate the effects of filter parameters variations on the wind power generation power smoothing performance. The proposed robust control strategy of the DSTATCOM is successfully applied to a microgrid, including WGs. The simulation results obviously show that the proposed control technique can effectively smooth the fluctuations in the wind turbines' (WT) output power caused by wind speed variations; taking into account the filter parameters variations (structural parameter uncertainties).

A Study on the Remanufacturing of Used Machine Tools (노후된 공작기계의 재제조에 관한 연구)

  • Roh, Young-Hwa
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.403-410
    • /
    • 2020
  • Continuous industrial development has led to a better quality of life for everyone, even further accelerating industrial growth. Industrial development, however, has also caused environmental degradation, which is posing a serious threat to humanity. It has also encouraged the indiscriminate use of limited resources, causing resource depletion. Efficient resource management based on resource circulation is critical to saving resources. Resource circulation methods are as follows: reducing the use of resources in the manufacturing process, recycling used or reprocessed products and reusing used resources without being reprocessed, remanufacturing with end-of-life products with disassembled parts. Furthermore, remanufacturing process including cleaning, inspection, repairing, and reassembling facilitate performance level as well as new typical products. It is noteworthy that the remanufacturing of machine tools can significantly save resources because their structural parts are substantially large in size. Machine tools have served as a foundation for the manufacturing industry, which has driven Korea's industrial development. Nevertheless, a few research has been reported for remanufacturing technology with used machine tools. Relevant research of developing a remanufacturing process chart and method is prerequisite for saving the resource and environments.

Diagonal bracing of steel frames with multi-cable arrangements

  • Husem, Metin;Demir, Serhat;Park, Hong G.;Cosgun, Suleyman I.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1121-1137
    • /
    • 2016
  • A large number of structure in the world were build with poor seismic details, with or without any lateral load resisting system like concentrically braced frames and steel plate shear walls. These structures can reveal deteriorating hysteretic behaviors with stiffness and strength degradation. Therefore, seismic retrofitting of such structures for drift control has vital importance. In this study a retrofit methodology has been developed, which involves diagonal bracing of steel frames with different cable arrangements. In the experimental and numerical program 5 different lateral load resisting system were tested and results compared with each other. The results indicated that multi-cable arrangements suggested in this study showed stable ductile behavior without any sudden decrease in strength. Due to the usage of more than one diagonal cable, fracture of any cable did not significantly affect the overall strength and deformation capacity of the system. In cable braced systems damages concentrated in the boundary zones of the cables and beams. That is why boundary zone must have enough stiffness and strength to resist tension field action of cables.

Effect of reinforcement strength on seismic behavior of concrete moment frames

  • Fu, Jianping;Wu, Yuntian;Yang, Yeong-bin
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.699-718
    • /
    • 2015
  • The effect of reinforcing concrete members with high strength steel bars with yield strength up to 600 MPa on the overall seismic behavior of concrete moment frames was studied experimentally and numerically. Three geometrically identical plane frame models with two bays and two stories, where one frame model was reinforced with hot rolled bars (HRB) with a nominal yield strength of 335 MPa and the other two by high strength steel bars with a nominal yield strength of 600 MPa, were tested under simulated earthquake action considering different axial load ratios to investigate the hysteretic behavior, ductility, strength and stiffness degradation, energy dissipation and plastic deformation characteristics. Test results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frame models reinforced with normal and high strength steel bars have comparable overall deformation capacity. Compared with the frame model subjected to a low axial load ratio, the ones under a higher axial load ratio exhibit more plump hysteretic loops. The proved reliable finite element analysis software DIANA was used for the numerical simulation of the tests. The analytical results agree well with the experimental results.

Optimum design of plane steel frames with PR-connections using refined plastic hinge analysis and genetic algorithm

  • Yun, Young Mook;Kang, Moon Myung;Lee, Mal Suk
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.387-407
    • /
    • 2006
  • A Genetic Algorithm (hereinafter GA) based optimum design algorithm and program for plane steel frames with partially restrained connections is presented. The algorithm was incorporated with the refined plastic hinge analysis method, in which geometric nonlinearity was considered by using the stability functions of beam-column members and material nonlinearity was considered by using the gradual stiffness degradation model that included the effects of residual stress, moment redistribution by the occurrence of plastic hinges, partially restrained connections, and the geometric imperfection of members. In the genetic algorithm, a tournament selection method and micro-GAs were employed. The fitness function for the genetic algorithm was expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions were expressed, respectively, as the weight of steel frames and the constraint functions which account for the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimum design results of two plane steel frames with fully and partially restrained connections were compared.

Reduction of the actuator oscillations in the flying vehicle under a follower force

  • Kavianipour, O.;Khoshnood, A.M.;Sadati, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.149-166
    • /
    • 2013
  • Flexible behaviors in new aerospace structures can lead to a degradation of their control and guidance system and undesired performance. The objectives of the current work are to analyze the vibration resulting from the propulsion force on a Single Stage to Orbit (SSTO) launch vehicle (LV). This is modeled as a follower force on a free-free Euler-Bernoulli beam consisting of two concentrated masses at the two free ends. Once the effects on the oscillation of the actuators are studied, a solution to reduce these oscillations will also be developed. To pursue this goal, the stability of the beam model is studied using Ritz method. It is determined that the transverse and rotary inertia of the concentrated masses cause a change in the critical follower force. A new dynamic model and an adaptive control system for an SSTO LV have been developed that allow the aerospace structure to run on its maximum bearable propulsion force with the optimum effects on the oscillation of its actuators. Simulation results show that such a control model provides an effective way to reduce the undesirable oscillations of the actuators.