• Title/Summary/Keyword: structural degradation

Search Result 804, Processing Time 0.022 seconds

BIOLOGICAL PRETREATMENT OF HIGH ENERGY SORGHUM (하이에너지수수의 생물학적 전처리)

  • ;H.K
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1992
  • Degradation of structural carbohydrates has been observed in samples of sweet sorghum inoculated with either Clostridium cellulolyticum or Bacteroides succinogenes. However, conditions under which these rellulolytic organisms can compete effectively with lactic acid bacteria have not yet been determined. Degradation of cellulose by B. succinogenes was found not to be inhibited by either glucose or succinate.

  • PDF

Analytical Study on Structural Behavior of Surface Damaged Concrete Member by Calcium Leaching Degradation (칼슘 용출 열화에 의해 표면이 손상된 콘크리트 부재의 구조적 거동에 관한 해석적 연구)

  • Choi, Yoon-Suk;Jang, Yong-Hwan;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.22-32
    • /
    • 2014
  • Durability is one of the most important and attractive subjects in concrete research field because not only durability of concrete is reduced by various degradation factors but also its reduction adversely influences the structural performance and service life of concrete structure. For this reason, a considerable amount of papers associated with concrete durability have been published and those researches were mainly focused on the changes of intrinsic properties of concrete due to chemicophysical degradations. However, the relationship between durability of concrete and structural behavior of concrete member has not been well established yet. In this study, calcium leaching degradation, a cause of concrete strength reduction, was dealt with. The experiments of compressive and flexural behavior of degraded concrete member were performed to evaluate the characteristics of structural behavior according to degradation level. Finally, the results from the experiments were compared with those obtained from nonlinear FEM analysis. The results from this study clearly showed that leaching degradation leads to decrease in compressive strength and compressive behavior evolves from brittle to ductile failure pattern during the degradation process. Load capacity and flexible rigidity of the degraded RC member decreased when the degradation level increased, in compressive zone. Additionally, it was found that the values from nonlinear FEM analysis, CDP model in ABAQUS, coincided well with the experimental results.

Interaction of Oxygen and Chlorine Dioxide in Pulp Bleaching (I) -Studies on the Degradation of Lignin Model Compounds- (펄프 표백시 산소와 이산화염소의 상호작용 (제1보) - 리그닌 모델화합물 연구 -)

  • 윤병호;황병호;김세종;최경화
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.74-78
    • /
    • 2003
  • The structural property of phenolic and non-phenolic lignin has an effect on the reaction rate of lignin by oxygen and chlorine dioxide respectively. Moreover, the undesirable degradation of cellulose followed by lignin degradation is influenced by chemical charge and reaction time. In this paper, several lignin model compounds were used to illuminate the interaction of oxygen and chlorine dioxide by varying the position of O and D(OD, DO, ODO and DOD), and gas chromatography method was used to investigate the degradation of lignin by determining the content of methoxyl groups in lignin. It was shown that structural properties of lignin models were more influential on the degradation and demethylation of lignin than the above combination. Combination of oxygen and chlorine dioxide, however, was more effective in degradation of lignin than only one stage, and three stages than two stages.

Soil structure interaction effects on structural parameters for stiffness degrading systems built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.655-676
    • /
    • 2013
  • In this study, strength reduction factors and inelastic displacement ratios are investigated for SDOF systems with period range of 0.1-3.0 s considering soil structure interaction for earthquake motions recorded on soft soil. The effect of stiffness degradation on strength reduction factors and inelastic displacement ratios is investigated. The modified-Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. The effect of negative strain - hardening on the inelastic displacement and strength of structures is also investigated. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. New equations are proposed for strength reduction factor and inelastic displacement ratio of interacting system as a function of structural period($\tilde{T}$, T) ductility (${\mu}$) and period lengthening ratio ($\tilde{T}$/T).

Influence of pinching effect of exterior joints on the seismic behavior of RC frames

  • Favvata, Maria J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • Nonlinear dynamic analyses are carried out to investigate the influence of the pinching hysteretic response of the exterior RC beam-column joints on the seismic behavior of multistory RC frame structures. The effect of the pinching on the local and global mechanisms of an 8-storey bare frame and an 8-storey pilotis type frame structure is evaluated. Further, an experimental data bank extracted from literature is used to acquire experimental experience of the range of the real levels that have to be considered for the pinching effect on the hysteretic response of the joints. Thus, three different cases for the hysteretic response of the joints are considered: (a) joints with strength and stiffness degradation characteristics but without pinching effect, (b) joints with strength degradation, stiffness degradation and low pinching effect and (c) joints with strength degradation, stiffness degradation and high pinching effect. For the simulation of the beam-column joints a special-purpose rotational spring element that incorporates the examined hysteretic options developed by the authors and implemented in a well-known nonlinear dynamic analysis program is employed for the analysis of the structural systems. The results of this study indicate that the effect of pinching on the local and global responses of the examined cases is not really significant at early stages of the seismic loading and especially in the cases when strength degradation in the core of exterior joint has occurred. Nevertheless in the cases when strength degradation does not occur in the joints the pinching may increase the demands for ductility and become critical for the columns at the base floor of the frame structures. Finally, as it was expected the ability for energy absorption was reduced due to pinching effect.

Sensitivity Analysis of Parameters Affecting Seismic Response for RC Shear Wall with Age-Related Degradation (경년열화된 철근콘크리트 전단벽의 지진응답에 영향을 미치는 변수들의 민감도분석)

  • Park, Jun-Hee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • After a concrete is poured, reinforced concrete structures were distressed by physical and chemical factor over time. It is in need to define important variables related to structural behavior for effectively conducting seismic analysis of structures with age-related degradation. In this study, a sensibility analysis using the first-order second moment method was performed to analyze an important variables for the reinforced concrete shear wall with age-related degradation. Because the seismic capacity of aging structures without a concrete hardening effect can be underestimated, the sensibility of analysis variables was analyzed according to the concrete hardening. Important variables for RC shear wall with age-related degradation was presented by using the tornado diagram.

Degradation Damage Evaluation of High Temperature Structural Components by Electrochemical Anodic Polarization Test (전기화학적 양극분극시험에 의한 고온 설비부재의 열화손상 평가)

  • Yu, Ho-Seon;Song, Mun-Sang;Song, Gi-Uk;Ryu, Dae-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1398-1407
    • /
    • 2000
  • The structural steels of power plant show the decrease of mechanical properties due to degradation such as temper embrittlement, creep damage and softening during long-term operation at high temper ature. The typical causes of material degradation damage are the creation and coarsening of carbides(M23C6, M6C) and the segregation of impurities(P, Sb and Sn) to grain boundary. It is also well known that material degradation induces the cleavage fracture and increases the ductile-brittle transition temperature of steels. So, it is very important to evaluate degradation damage to secure the reliable and efficient service condition and to prevent brittle failure in service. However, it would not be appropriate to sample a large test piece from in-service components. Therefore, it is necessary to develop a couple of new approaches to the non-destructive estimation technique which may be applicable to assessing the material degradation of the components with not to influence their essential strength. The purpose of this study is to propose and establish a new electrochemical technique for non-destructive evaluation of material degradation damage for Cr-Mo steels which is widely used in the high temperature structural components. And the electrochemical anodic polarization test results are compared with those of semi-nondestructive SP test.

Modeling of coupled THMC processes in porous media

  • Kowalsky, Ursula;Bente, Sonja;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.27-52
    • /
    • 2014
  • For landfill monitoring and aftercare, long-term prognoses of emission and deformation behaviour are required. Landfills may be considered as heterogeneous porous soil-like structures, in which flow and transport processes of gases and liquids interact with local material degradation and mechanical deformation of the solid skeleton. Therefore, in the framework of continuous porous media mechanics a model is developed that permits the investigation of coupled mechanical, hydraulical and biochemical processes in municipal solid waste landfills.

Concrete structures under combined mechanical and environmental actions: Modelling of durability and reliability

  • Vorechovska, Dita;Somodikova, Martina;Podrouzek, Jan;Lehky, David;Teply, Bretislav
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2017
  • Service life assessments which do not include the synergy between mechanical and environmental loading are neglecting a factor that can have a significant impact on structural safety and durability assessment. The degradation of concrete structure is a result of the combined effect of environmental and mechanical factors. In order to make service life design realistic it is necessary to consider both of these factors acting simultaneously. This paper deals with the advanced modelling of concrete carbonation and chloride ingress into concrete using stochastic 1D and 2D models. Widely accepted models incorporated into the new fib Model Code 2010 are extended to include factors that reflect the coupled effects of mechanical and environmental loads on the durability and reliability of reinforced concrete structures. An example of cooling tower degradation by carbonation and an example of a bended reinforced concrete beam kept for several years in salt fog are numerically studied to show the capability of the stochastic approach. The modelled degradation measures are compared with experimental results, leading to good agreement.

An iterative hybrid random-interval structural reliability analysis

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1061-1070
    • /
    • 2014
  • An iterative hybrid structural dynamic reliability prediction model has been developed under multiple-time interval loads with and without consideration of stochastic structural strength degradation. Firstly, multiple-time interval loads have been substituted by the equivalent interval load. The equivalent interval load and structural strength are assumed as random variables. For structural reliability problem with random and interval variables, the interval variables can be converted to uniformly distributed random variables. Secondly, structural reliability with interval and stochastic variables is computed iteratively using the first order second moment method according to the stress-strength interference theory. Finally, the proposed method is verified by three examples which show that the method is practicable, rational and gives accurate prediction.