• Title/Summary/Keyword: structural decomposition analysis

Search Result 233, Processing Time 0.026 seconds

NUMERICAL ANALYSIS OF A SO3 PACKED COLUMN DECOMPOSITION REACTOR WITH ALLOY RA 330 STRUCTURAL MATERIAL FOR NUCLEAR HYDROGEN PRODUCTION USING THE SULFUR- IODINE PROCESS

  • Choi, Jae-Hyuk;Tak, Nam-Il;Shin, Young-Joon;Kim, Chan-Soo;Lee, Ki-Young
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1275-1284
    • /
    • 2009
  • A directly heated $SO_3$ decomposer for the sulfur-iodine and hybrid-sulfur processes has been introduced and analyzed using the computational fluid dynamics (CFD) code CFX 11. The use of a directly heated decomposition reactor in conjunction with a very high temperature reactor (VHTR) allows for higher decomposition reactor operating temperatures. However, the high temperatures and strongly corrosive operating conditions associated with $SO_3$ decomposition present challenges for the structural materials of decomposition reactors. In order to resolve these problems, we have designed a directly heated $SO_3$ decomposer using RA330 alloy as a structural material and have performed a CFD analysis of the design based on the finite rate chemistry model. The CFD results show the maximum temperature of the structural material could be maintained sufficiently below 1073 K, which is considered the target temperature for RA 330. The CFD simulations also indicated good performance in terms of $SO_3$ decomposition for the design parameters of the present study.

Modal transformation tools in structural dynamics and wind engineering

  • Solari, Giovanni;Carassale, Luigi
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.221-241
    • /
    • 2000
  • Structural dynamics usually applies modal transformation rules aimed at de-coupling and/or minimizing the equations of motion. Proper orthogonal decomposition provides mathematical and conceptual tools to define suitable transformed spaces where a multi-variate and/or multi-dimensional random process is represented as a linear combination of one-variate and one-dimensional uncorrelated processes. Double modal transformation is the joint application of modal analysis and proper orthogonal decomposition applied to the loading process. By adopting this method the structural response is expressed as a double series expansion in which structural and loading mode contributions are superimposed. The simultaneous use of the structural modal truncation, the loading modal truncation and the cross-modal orthogonality property leads to efficient solutions that take into account only a few structural and loading modes. In addition the physical mechanisms of the dynamic response are clarified and interpreted.

Domain Decomposition Method for Elasto-Plastic Problem (탄소성문제 적용을 위한 영역분할법)

  • Bae, Byung-Kyu;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3384-3390
    • /
    • 2011
  • This paper describes a domain decomposition method of parallel finite element analysis for elasto-plastic structural problems. As a parallel numeral algorithm for the finite element analysis, the authors have utilized the domain decomposition method combined with an iterative solver such as the conjugate gradient method. Here the domain decomposition method algorithm was applied directly to elasto-plastic problem. The present system was successfully applied to three-dimensional elasto-plastic structural problems.

Structural Analysis of Space Truss by using New Force Method based on Singular Value Decomposition (특이값 분해로 정식화 된 새로운 하중법을 이용한 입체 트러스 구조 해석)

  • Lee, Su-Hyun;Chung, Woo-Sung;Lee, Jae-Hong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.481-489
    • /
    • 2011
  • In this paper presents new force method by using singular value decomposition. The existing force method has some advantages about analysis of truss structures such as it is easier basic concept than finite element method, which apply to analyze truss structures. However, this method has complex formulation for analysis. Therefore, in this study proposes new force method using singular value decomposition, which is both having easy basic concept and simple computation than existing force method. The proposed method is illustrated through numerical examples.

Parallel Process System and its Application to Steam Generator Structural Analysis

  • Chang Yoon-Suk;Ko Han-Ok;Choi Jae-Boong;Kim Young-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2007-2015
    • /
    • 2005
  • A large-scale analysis to evaluate complex material and structural behaviors is one of interesting topic in diverse engineering and scientific fields. Also, the utilization of massively parallel processors has been a recent trend of high performance computing. The objective of this paper is to introduce a parallel process system which consists of general purpose finite element analysis solver as well as parallelized PC cluster. The later was constructed using eight processing elements and the former was developed adopting both hierarchical domain decomposition method and balancing domain decomposition method. Then, to verify the efficiency of the established system, it was applied for structural analysis of steam generator in nuclear power plant. Since the prototypal evaluation results agreed well to the corresponding reference solutions it is believed that, after reinforcement of PC cluster by increasing number of processing elements, the promising parallel process system can be utilized as a useful tool for advanced structural integrity evaluation.

Parallel Finite Element Analysis System Based on Domain Decomposition Method Bridges (영역분할법에 기반을 둔 병렬 유한요소해석 시스템)

  • Lee, Joon-Seong;Shioya, Ryuji;Lee, Eun-Chul;Lee, Yang-Chang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2009
  • This paper describes an application of domain decomposition method for parallel finite element analysis which is required to large scale 3D structural analysis. A parallel finite element method system which adopts a domain decomposition method is developed. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation method is introduced as a basic tool for element generation. Domain decomposition method using automatic mesh generation system holds great benefits for 3D analyses. Aa parallel numerical algorithm for the finite element analyses, domain decomposition method was combined with an iterative solver, i.e. the conjugate gradient(CG) method where a whole analysis domain is fictitiously divided into a number of subdomains without overlapping. Practical performance of the present system are demonstrated through several examples.

An Analysis Method of Large Structure Using Matrix Blocking (블록화기법을 이용한 대형구조물의 해석방법)

  • Jung, Sung-Jin;Lee, Min-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.30-37
    • /
    • 2014
  • In this study, we studied how to perform the structural analysis which need a large-capacity flash memory with the computer program when the flash memory storage of a personal computer has no enough room for the analysis of structure. As one of the solutions of this problem, the blocking method of stiffness matrix, which is a method that stiffness matrix is divided by a few blocks and each block is sequentially used for the calculation of matrix decomposition, is proposed and an algorithm available in computer program is derived on the method. Finally, A structural analysis program (sNs) based on this study is developed and the correctness and efficiency of the algorithm is founded through some examples which are fundamental in structural analysis.

Decoupling and Sources of Structural Transformation of East Asian Economies: An International Input-Output Decomposition Analysis

  • Ko, Jong-Hwan;Pascha, Werner
    • East Asian Economic Review
    • /
    • v.18 no.1
    • /
    • pp.55-81
    • /
    • 2014
  • This study aims to answer two questions using input-output decomposition analysis: 1) Have emerging Asian economies decoupled? 2) What are the sources of structural changes in gross outputs and value-added of emerging Asian economies related to the first question? The main findings of the study are as follows: First, since 1990, there has been a trend of increasing dependence on exports to extra-regions such as G3 and the ROW, indicating no sign of "decoupling", but rather an increasing integration of emerging Asian countries into global trade. Second, there is a contrasting feature in the sources of structural changes between non-China emerging Asia and China. Dependence of non-China emerging Asia on intra-regional trade has increased in line with strengthening economic integration in East Asia, whereas China has disintegrated from the region. Therefore, it can be said that China has contributed to no sign of decoupling of emerging Asia as a whole.

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.